Iterative learning of energy-efficient dynamic walking gaits

被引:0
作者
Kong, Felix H. [1 ]
Manchester, Ian R. [1 ]
机构
[1] Univ Sydney, Australian Ctr Field Robot, Sydney, NSW 2006, Australia
来源
2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2018年
关键词
DESIGN; ILC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic walking robots have the potential for efficient and lifelike locomotion, but computing efficient gaits and tracking them is difficult in the presence of under-modeling. Iterative Learning Control (ILC) is a method to learn the control signal to track a periodic reference over several attempts, augmenting a model with online data. Terminal ILC (TILC), a variant of ILC, allows other performance objectives to be addressed at the cost of ignoring parts of the reference. However, dynamic walking robot gaits are not necessarily periodic in time. In this paper, we adapt TILC to jointly optimize final foot placement and energy efficiency on dynamic walking robots by indexing by a phase variable instead of time, yielding "phase-indexed TILC" (theta-TILC). When implemented on a five-link walker in simulation, theta-TILC learns a more energy-efficient walking motion compared to traditional time-indexed TILC.
引用
收藏
页码:3815 / 3820
页数:6
相关论文
共 36 条
  • [1] Iterative learning control: Brief survey and categorization
    Ahn, Hyo-Sung
    Chen, YangQuan
    Moore, Kevin L.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (06): : 1099 - 1121
  • [2] [Anonymous], 2013, INT J ROBOTICS RES
  • [3] BETTERING OPERATION OF ROBOTS BY LEARNING
    ARIMOTO, S
    KAWAMURA, S
    MIYAZAKI, F
    [J]. JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02): : 123 - 140
  • [4] Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge
    Bhounsule, Pranav A.
    Cortell, Jason
    Grewal, Anoop
    Hendriksen, Bram
    Karssen, J. G. Daniel
    Paul, Chandana
    Ruina, Andy
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (10) : 1305 - 1321
  • [5] Blanken L, 2016, P AMER CONTR CONF, P2629, DOI 10.1109/ACC.2016.7525313
  • [6] Boudali A. M., 2017, P IEEE INT C MECH IC
  • [7] A survey of iterative learning control
    Bristow, Douglas A.
    Tharayil, Marina
    Alleyne, Andrew G.
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03): : 96 - 114
  • [8] Byl K., 2008, P IEEE INT C ROB AUT
  • [9] COLLINS S, 2005, SCIENCE
  • [10] Djoudi D., 2005, OPTIMAL REFERENCE MO, V19, P2