RationalizeRoots: Software package for the rationalization of square roots

被引:36
作者
Besier, Marco [1 ,2 ]
Wasser, Pascal [2 ]
Weinzierl, Stefan [2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
关键词
Feynman integrals; Square roots; Rationalization; FEYNMAN-INTEGRALS; EPSILON-EXPANSION; 2-LOOP; LOOP; MASSES; SERIES; FORM;
D O I
10.1016/j.cpc.2020.107197
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The computation of Feynman integrals often involves square roots. One way to obtain a solution in terms of multiple polylogarithms is to rationalize these square roots by a suitable variable change. We present a program that can be used to find such transformations. After an introduction to the theoretical background, we explain in detail how to use the program in practice. Program summary Program title: RationalizeRoots Program files doi: http://dx.doi.org/10.17632/gbcc9z9tdb.1 Licensing provisions: GNU General Public License 3 Programming language: Mathematica, Maple Nature of problem: Analytic solutions for Feynman integrals are critical for accurate theoretical predictions in high energy particle physics. The computation of these integrals often involves square roots that need to be rationalized via suitable variable transformations. Solution method: Appropriate variable changes for given square roots are constructed by parametrizing algebraic hypersurfaces associated to these square roots by families of lines. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 53 条
[41]   All orders structure and efficient computation of linearly reducible elliptic Feynman integrals [J].
Hidding, Martijn ;
Moriello, Francesco .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
[42]   Electron self-energy in QED at two loops revisited [J].
Hoenemann, Ina ;
Tempest, Kirsten ;
Weinzierl, Stefan .
PHYSICAL REVIEW D, 2018, 98 (11)
[43]   (MS)over-bar vs. pole masses of gauge bosons - II: two-loop electroweak fermion corrections [J].
Jegerlehner, F ;
Kalmykov, MY ;
Veretin, O .
NUCLEAR PHYSICS B, 2003, 658 (1-2) :49-112
[44]   Series and ε-expansion of the hypergeometric functions [J].
Kalmykov, MY .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 135 :280-284
[45]   Analytic treatment of the two loop equal mass sunrise graph [J].
Laporta, S ;
Remiddi, E .
NUCLEAR PHYSICS B, 2005, 704 (1-2) :349-386
[46]  
Lee R.N., ARXIV170707856
[47]  
Müller-Stach S, 2012, COMMUN NUMBER THEORY, V6, P203
[48]   Exact top Yukawa corrections to Higgs boson decay into bottom quarks [J].
Primo, Amedeo ;
Sasso, Gianmarco ;
Somogyi, Gabor ;
Tramontano, Francesco .
PHYSICAL REVIEW D, 2019, 99 (05)
[49]   An elliptic generalization of multiple polylogarithms [J].
Remiddi, Ettore ;
Tancredi, Lorenzo .
NUCLEAR PHYSICS B, 2017, 925 :212-251
[50]   Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral [J].
Remiddi, Ettore ;
Tancredi, Lorenzo .
NUCLEAR PHYSICS B, 2016, 907 :400-444