RationalizeRoots: Software package for the rationalization of square roots

被引:36
作者
Besier, Marco [1 ,2 ]
Wasser, Pascal [2 ]
Weinzierl, Stefan [2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
关键词
Feynman integrals; Square roots; Rationalization; FEYNMAN-INTEGRALS; EPSILON-EXPANSION; 2-LOOP; LOOP; MASSES; SERIES; FORM;
D O I
10.1016/j.cpc.2020.107197
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The computation of Feynman integrals often involves square roots. One way to obtain a solution in terms of multiple polylogarithms is to rationalize these square roots by a suitable variable change. We present a program that can be used to find such transformations. After an introduction to the theoretical background, we explain in detail how to use the program in practice. Program summary Program title: RationalizeRoots Program files doi: http://dx.doi.org/10.17632/gbcc9z9tdb.1 Licensing provisions: GNU General Public License 3 Programming language: Mathematica, Maple Nature of problem: Analytic solutions for Feynman integrals are critical for accurate theoretical predictions in high energy particle physics. The computation of these integrals often involves square roots that need to be rationalized via suitable variable transformations. Solution method: Appropriate variable changes for given square roots are constructed by parametrizing algebraic hypersurfaces associated to these square roots by families of lines. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 53 条
[31]   Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series [J].
Broedel, Johannes ;
Duhr, Claude ;
Dulat, Falko ;
Penante, Brenda ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08)
[32]   Elliptic polylogarithms and iterated integrals on elliptic curves. II. An application to the sunrise integral [J].
Broedel, Johannes ;
Duhr, Claude ;
Dulat, Falko ;
Tancredi, Lorenzo .
PHYSICAL REVIEW D, 2018, 97 (11)
[33]   Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism [J].
Broedel, Johannes ;
Duhr, Claude ;
Dulat, Falko ;
Tancredi, Lorenzo .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05)
[34]  
Chaubey E, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2019)185
[35]   New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams [J].
Davydychev, AI ;
Kalmykov, MY .
NUCLEAR PHYSICS B, 2001, 605 (1-3) :266-318
[36]   The massless hexagon integral in D=6 dimensions [J].
Del Duca, Vittorio ;
Duhr, Claude ;
Smirnov, Vladimir A. .
PHYSICS LETTERS B, 2011, 703 (03) :363-365
[37]  
Festi D., COMMUN NUMBER THEORY, V13
[38]   Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass [J].
Fleischer, J ;
Kotikov, AV ;
Veretin, OL .
NUCLEAR PHYSICS B, 1999, 547 (1-2) :343-374
[39]   Pentagon functions for massless planar scattering amplitudes [J].
Gehrmann, T. ;
Henn, J. M. ;
Lo Presti, N. A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[40]   Analytic results for two-loop master integrals for Bhabha scattering I [J].
Henn J.M. ;
Smirnov V.A. .
Journal of High Energy Physics, 2013 (11)