RationalizeRoots: Software package for the rationalization of square roots

被引:36
作者
Besier, Marco [1 ,2 ]
Wasser, Pascal [2 ]
Weinzierl, Stefan [2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
关键词
Feynman integrals; Square roots; Rationalization; FEYNMAN-INTEGRALS; EPSILON-EXPANSION; 2-LOOP; LOOP; MASSES; SERIES; FORM;
D O I
10.1016/j.cpc.2020.107197
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The computation of Feynman integrals often involves square roots. One way to obtain a solution in terms of multiple polylogarithms is to rationalize these square roots by a suitable variable change. We present a program that can be used to find such transformations. After an introduction to the theoretical background, we explain in detail how to use the program in practice. Program summary Program title: RationalizeRoots Program files doi: http://dx.doi.org/10.17632/gbcc9z9tdb.1 Licensing provisions: GNU General Public License 3 Programming language: Mathematica, Maple Nature of problem: Analytic solutions for Feynman integrals are critical for accurate theoretical predictions in high energy particle physics. The computation of these integrals often involves square roots that need to be rationalized via suitable variable transformations. Solution method: Appropriate variable changes for given square roots are constructed by parametrizing algebraic hypersurfaces associated to these square roots by families of lines. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]  
Abreu S, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)123
[3]   Analytic results for the planar double box integral relevant to top-pair production with a closed top loop [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[4]   Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2018, 121 (14)
[5]   Feynman integrals and iterated integrals of modular forms [J].
Adams, Luise ;
Weinzierl, Stefan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) :193-251
[6]   The ε-form of the differential equations for Feynman integrals in the elliptic case [J].
Adams, Luise ;
Weinzierl, Stefan .
PHYSICS LETTERS B, 2018, 781 :270-278
[7]   The kite integral to all orders in terms of elliptic polylogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Schweitzer, Armin ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[8]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[9]   The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[10]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)