Fault Detection in Soft-started Induction Motors using Convolutional Neural Network Enhanced by Data Augmentation Techniques

被引:2
作者
Pasqualotto, Dario [1 ]
Navarro Navarro, Angela [2 ]
Zigliotto, Mauro [1 ]
Antonino-Daviu, Jose A. [3 ]
Biot-Monterde, Vicente [2 ]
机构
[1] Univ Padua, Dept Management & Engn, Vicenza, Italy
[2] Univ Politecn Valencia, Dept Ingn Elect, Valencia, Spain
[3] Univ Politecn Valencia, Inst Tecnol Energia, Valencia, Spain
来源
IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY | 2021年
关键词
Convolutional Neural Networks; Data Augmentation; Induction Motor; Soft-starter; Stray Flux; ROTOR FAULTS;
D O I
10.1109/IECON48115.2021.9589439
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stray flux analysis is an interesting source of information for the diagnosis of Induction Motors (IMs). The widespread use of these motors in industry leads to a necessity of additional tools and methods for their predictive maintenance. On the other hand, soft-starters are increasingly used to reduce the high consumption of IMs at start-up. In this work, AI techniques based on convolutional neural networks are applied to detect rotor faults in soft-started motors. The objective is the automatic early detection of broken bars, avoiding the necessity of user intervention to interpret the obtained results. This work proves the potential of the methodology, including a successful set of experimental results.
引用
收藏
页数:6
相关论文
共 20 条
  • [1] Bellini A, 2006, IEEE IND ELEC, P2420
  • [2] Study of Rotor Faults in Induction Motors Using External Magnetic Field Analysis
    Ceban, Andrian
    Pusca, Remus
    Romary, Raphael
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (05) : 2082 - 2093
  • [3] Corral-Hernandez J., 2016, IECON 2016 42 ANN C, p6977 6982
  • [4] Corral-Hernandez JA, 2014, 2014 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM), P342, DOI 10.1109/OPTIM.2014.6850926
  • [5] Frosini L, 2017, 2017 IEEE 11TH INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRICAL MACHINES, POWER ELECTRONICS AND DRIVES (SDEMPED), P510, DOI 10.1109/DEMPED.2017.8062403
  • [6] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [7] Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks
    Ince, Turker
    Kiranyaz, Serkan
    Eren, Levent
    Askar, Murat
    Gabbouj, Moncef
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (11) : 7067 - 7075
  • [8] Ishkova Ielyzaveta, 2016, Przeglad Elektrotechniczny, V92, P166, DOI 10.15199/48.2016.04.36
  • [9] Jiang C, 2017, IEEE ENER CONV, P5424, DOI 10.1109/ECCE.2017.8096907
  • [10] Khanjani M., 2020, MEASUREMENT