Tandem-win graphs

被引:16
作者
Clarke, NE [1 ]
Nowakowski, RJ
机构
[1] Acadia Univ, Dept Math & Stat, Wolfville, NS B0P 1X0, Canada
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS, Canada
关键词
game; cop; tandem-win; pursuit; graph;
D O I
10.1016/j.disc.2004.11.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this version of the Cops and Robber game, the cops move in tandems, or pairs, such that they are at distance at most one after every move. We present a recognition theorem for tandem-win graphs, and a characterization of triangle-free tandem-win graphs. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 10 条
[1]   A GAME OF COPS AND ROBBERS [J].
AIGNER, M ;
FROMME, M .
DISCRETE APPLIED MATHEMATICS, 1984, 8 (01) :1-12
[2]   ON BRIDGED GRAPHS AND COP-WIN GRAPHS [J].
ANSTEE, RP ;
FARBER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (01) :22-28
[3]  
Brandstadt A., 1999, SIAM MONOGRAPHS DISC
[4]   Bridged graphs are cop-win graphs: An algorithmic proof [J].
Chepoi, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 69 (01) :97-100
[5]   On distance-preserving and domination elimination orderings [J].
Chepoi, V .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (03) :414-436
[6]  
Clarke N.E., 2002, THESIS DALHOUSIE U
[7]  
Clarke NE, 2000, ARS COMBINATORIA, V56, P97
[8]  
HAHN G, IN PRESS DISCRETE MA
[9]  
Nowakowski R., 1983, DISCRETE MATH, V43, P23
[10]  
Quilliot A., 1983, THESIS U PARIS 6