Neural network decoder for topological color codes with circuit level noise

被引:53
作者
Baireuther, P. [1 ]
Caio, M. D. [1 ]
Criger, B. [2 ,3 ]
Beenakker, C. W. J. [1 ]
O'Brien, T. E. [1 ]
机构
[1] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[2] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[3] IGDORE, Delft, Netherlands
关键词
quantum error correction; topological color codes; machine learning; recurrent neural network; TOLERANT QUANTUM COMPUTATION; ERROR-CORRECTION;
D O I
10.1088/1367-2630/aaf29e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum computer needs the assistance of a classical algorithm to detect and identify errors that affect encoded quantum information. At this interface of classical and quantum computing the technique of machine learning has appeared as a way to tailor such an algorithm to the specific error processes of an experiment-without the need for a priori knowledge of the error model. Here, we apply this technique to topological color codes. We demonstrate that a recurrent neural network with long short-term memory cells can be trained to reduce the error rate epsilon(L) of the encoded logical qubit to values much below the error rate epsilon(phys) of the physical qubits-fitting the expected power law scaling epsilon(L)proportional to epsilon((d+1)/2)(phys), with d the code distance. The neural network incorporates the information from 'flag qubits' to avoid reduction in the effective code distance caused by the circuit. As a test, we apply the neural network decoder to a density-matrix based simulation of a superconducting quantum computer, demonstrating that the logical qubit has a longer life-time than the constituting physical qubits with near-term experimental parameters.
引用
收藏
页数:12
相关论文
共 56 条
[1]  
Abadi M., 2015, P 12 USENIX S OPERAT
[2]   Tricolored lattice gauge theory with randomness: fault tolerance in topological color codes [J].
Andrist, Ruben S. ;
Katzgraber, Helmut G. ;
Bombin, H. ;
Martin-Delgado, M. A. .
NEW JOURNAL OF PHYSICS, 2011, 13
[3]  
[Anonymous], 2011, ARXIV11085738
[4]  
[Anonymous], 2018, ARXIV180104377
[5]   Machine-learning-assisted correction of correlated qubit errors in a topological code [J].
Baireuther, P. ;
O'Brien, T. E. ;
Tarasinski, B. ;
Beenakker, C. W. J. .
QUANTUM, 2018, 2
[6]   Topological computation without braiding [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[7]   Topological quantum distillation [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Universal topological phase of two-dimensional stabilizer codes [J].
Bombin, H. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
NEW JOURNAL OF PHYSICS, 2012, 14
[9]   Optimal resources for topological two-dimensional stabilizer codes: Comparative study [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2007, 76 (01)