The potential of Li-ion batteries in ECOWAS solar home systems

被引:37
|
作者
Diouf, Boucar [1 ]
Avis, Christophe [1 ]
机构
[1] Kyung Hee Univ, Dept Informat Display, 26 Kyungheedae Ro, Seoul 02447, South Korea
关键词
Lithium-ion batteries; Lead-acid batteries; Rural solar home systems; Photovoltaic energy; Electric automobile; ECOWAS; ELECTRICAL ENERGY-STORAGE;
D O I
10.1016/j.est.2019.02.021
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lead-acid batteries commonly installed in solar home systems have a short lifespan. In rural areas of developing countries, this may leave systems non-functional because of the lack of service or financial limitations to acquire a new battery. Lithium-ion (Li-ion) batteries present revolutionary attributes, as longer lifespan, higher energy and power densities, as well as better tolerance to external parameters. In this paper we present the potential of Li-ion batteries to be an ideal substitution of lead-acid batteries in off-grid rural solar home systems. We defend that the mass production of Li-ion cells, to respond to industrial demand, particularly from the electric automobile industry, will benefit renewable energy and especially small size solar home systems. The electric automobile is one of the driving forces of Li-ion industry. It will indirectly allow rural zones of developing countries to access electricity at a lower cost to replace inefficient and harmful candles and kerosene lamps. Through the prototypes, built and presented in this study, we show that Li-ion battery packs when assembled locally, in developing countries, could be more affordable and contribute to a form of technological emergence. We present the case study of the Economic Community of West African States (ECOWAS).
引用
收藏
页码:295 / 301
页数:7
相关论文
共 50 条
  • [21] Carbon nanocoatings on active materials for Li-ion batteries
    Dominko, R.
    Gaberscek, M.
    Bele, A.
    Mihailovic, D.
    Jamnik, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (2-3) : 909 - 913
  • [22] Dipole-dipole interactions in electrolyte to facilitate Li-ion desolvation for low-temperature Li-ion batteries
    Liu, Changlin
    Li, Zongjun
    Jiang, Lili
    Zhu, Hao
    Wang, Fengchao
    Sheng, Lizhi
    JOURNAL OF ENERGY CHEMISTRY, 2025, 104 : 678 - 686
  • [23] RECONDITIONING OF Li-ION RECHARGEABLE BATTERIES, A POSSIBLE SOLUTION FOR BATTERIES CIRCULAR ECONOMY
    Ciobotaru, Ioana-Alina
    Benga, Florin-Mihai
    Valreanu, Danut-Ionel
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2021, 83 (01): : 17 - 22
  • [24] Binder-Free Electrodes and Their Application for Li-Ion Batteries
    Yuqiong Kang
    Changjian Deng
    Yuqing Chen
    Xinyi Liu
    Zheng Liang
    Tao Li
    Quan Hu
    Yun Zhao
    Nanoscale Research Letters, 15
  • [25] Binder-Free Electrodes and Their Application for Li-Ion Batteries
    Kang, Yuqiong
    Deng, Changjian
    Chen, Yuqing
    Liu, Xinyi
    Liang, Zheng
    Li, Tao
    Hu, Quan
    Zhao, Yun
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [26] NbSb2 as an anode material for Li-ion batteries
    Reddy, M. Anji
    Varadaraju, U. V.
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 336 - 339
  • [27] Integration of capacity fading in an electrochemical model of Li-ion batteries
    Jianqiang Kang
    A. T. Conlisk
    Giorgio Rizzoni
    Journal of Solid State Electrochemistry, 2014, 18 : 2425 - 2434
  • [28] Porphyrinic conjugated microporous polymer anode for Li-ion batteries
    Yang, Yang
    Yuan, Jiaxi
    Huang, Senhe
    Chen, Zhenying
    Lu, Chenbao
    Yang, Chongqing
    Zhai, Guangqun
    Zhu, Jinhui
    Zhuang, Xiaodong
    JOURNAL OF POWER SOURCES, 2022, 531
  • [29] A Compact Overview on Li-Ion Batteries Characteristics and Battery Management Systems Integration for Automotive Applications
    Ria, Andrea
    Dini, Pierpaolo
    ENERGIES, 2024, 17 (23)
  • [30] Vanadium diphosphides as negative electrodes for secondary Li-ion batteries
    Gillot, F.
    Menetrier, M.
    Bekaert, E.
    Dupont, L.
    Morcrette, M.
    Monconduit, L.
    Tarascon, J. M.
    JOURNAL OF POWER SOURCES, 2007, 172 (02) : 877 - 885