New Sharp Gagliardo-Nirenberg-Sobolev Inequalities and an Improved Borell-Brascamp-Lieb Inequality

被引:5
作者
Bolley, Francois [1 ]
Cordero-Erausquin, Dario [2 ]
Fujita, Yasuhiro [3 ]
Gentil, Ivan [4 ]
Guillin, Arnaud [5 ]
机构
[1] Sorbonne Univ Paris 6, Lab Probabilites Stat & Modelisat, UMR CNRS 8001, Paris, France
[2] Sorbonne Univ Paris 6, Inst Math Jussieu, UMR CNRS 7586, Paris, France
[3] Univ Toyama, Dept Math, Tomaya 9308555, Japan
[4] Univ Lyon, Univ Claude Bernard Lyon 1, UMR CNRS 5208, Inst Camille Jordan, Lyon, France
[5] Univ Clermont Auvergne, Lab Math Blaise Pascal, UMR CNRS 6620, Clermont Ferrand, France
关键词
BRUNN-MINKOWSKI; LOGARITHMIC SOBOLEV;
D O I
10.1093/imrn/rny111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new Borell-Brascamp-Lieb inequality that leads to novel sharp Euclidean inequalities such as Gagliardo-Nirenberg-Sobolev inequalities in and in the half-space . This gives a new bridge between the geometric point of view of the Brunn-Minkowski inequality and the functional point of view of the Sobolev-type inequalities. In this way we unify, simplify, and generalize results by S. Bobkov-M. Ledoux, M. del Pino-J. Dolbeault, and B. Nazaret.
引用
收藏
页码:3042 / 3083
页数:42
相关论文
共 29 条
[1]  
[Anonymous], 2017, ZURICH LECT ADV MATH
[2]  
[Anonymous], 1976, J. Differential Geometry, DOI DOI 10.4310/JDG/1214433725
[3]  
Bakry D., 2014, Grundlehren Math. Wiss, V348
[4]  
Barthe F., 1997, THESIS
[5]   From brunn-minkowski to sharp sobolev inequalities [J].
Bobkov, S. G. ;
Ledoux, M. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) :369-384
[6]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[7]   DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES [J].
Bolley, Francois ;
Gentil, Ivan ;
Guillin, Arnaud .
ANNALS OF PROBABILITY, 2018, 46 (01) :261-301
[8]  
Borell, 1975, PERIOD MATH HUNG, V6, P111
[9]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389