Modelling of dendritic growth in ternary alloy solidification with melt convection

被引:9
作者
Sun, D. -K. [1 ]
Zhu, M. -F. [1 ]
Dai, T. [1 ]
Cao, W. -S. [2 ]
Chen, S. -L. [2 ]
Raabe, D. [3 ]
Hong, C. -P. [4 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Adv Metall Mat, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[2] CompuTherm LLC, Madison, WI 53719 USA
[3] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[4] Yonsei Univ, Ctr Comp Aided Mat Proc CAMP, Dept Met Engn, Seoul 120749, South Korea
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Modelling; Lattice Boltzmann method; Cellular automaton; Dendritic growth; Convection; Ternary alloy; LATTICE BOLTZMANN METHOD; MICROSTRUCTURE; EQUATION;
D O I
10.1179/136404611X13001912813988
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A two-dimensional lattice Boltzmann-cellular automaton model is coupled with the CALPHAD (Calculation of Phase Diagrams) method for simulating dendritic growth during ternary alloy solidification with convection. In the model, the kinetics of dendritic growth is determined by the difference between the equilibrium liquidus temperature and the actual temperature at the solid/liquid interface, incorporating the effects of the interface curvature and the preferred dendritic growth orientation. The lattice Boltzmann method is used for evaluating the local liquid compositions of the two solutes impacted by diffusion and convection. Based on the local liquid compositions, the equilibrium liquidus temperature and the solid concentrations of the two solutes are obtained by the CALPHAD method. The model is applied to simulate dendritic growth of an Al-4.0 wt-%Cu-1.0 wt-%Mg ternary alloy with melt convection. The results demonstrate the high numerical convergence and stability, as well as computational efficiency, of the proposed model. Melt convection is found to influence the dendritic morphologies and microsegregation patterns in the solidification of ternary alloys.
引用
收藏
页码:177 / 183
页数:7
相关论文
共 20 条
[1]   A quantitative dendrite growth model and analysis of stability concepts [J].
Beltran-Sanchez, L ;
Stefanescu, DM .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (08) :2471-2485
[2]   The PANDAT software package and its applications [J].
Chen, SL ;
Daniel, S ;
Zhang, F ;
Chang, YA ;
Yan, XY ;
Xie, FY ;
Schmid-Fetzer, R ;
Oates, WA .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :175-188
[3]   LATTICE BOLTZMANN MODEL FOR SIMULATION OF MAGNETOHYDRODYNAMICS [J].
CHEN, SY ;
CHEN, HD ;
MARTINEZ, D ;
MATTHAEUS, W .
PHYSICAL REVIEW LETTERS, 1991, 67 (27) :3776-3779
[4]  
Deng B, 2005, CHINESE PHYS LETT, V22, P267, DOI 10.1088/0256-307X/22/2/001
[5]   Growth of 'dizzy dendrites' in a random field of foreign particles [J].
Gránásy, L ;
Pusztai, T ;
Warren, JA ;
Douglas, JF ;
Börzsönyi, T ;
Ferreiro, V .
NATURE MATERIALS, 2003, 2 (02) :92-96
[6]   Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J].
Guo, ZL ;
Zheng, CG ;
Shi, BC .
CHINESE PHYSICS, 2002, 11 (04) :366-374
[7]  
HECHT U, 2004, MATER SCI ENG, V46, pR1
[8]  
Hong CP, 2006, FLUID DYN MATER PROC, V2, P247
[9]  
Liu Y., 2006, Tsinghua Sci. Technol., V11, P495, DOI [10.1016/S1007-0214(06)70225-5, DOI 10.1016/S1007-0214(06)70225-5]
[10]   Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases [J].
Luo, LS .
PHYSICAL REVIEW E, 2000, 62 (04) :4982-4996