On commuting operators solving Gleason's problem

被引:7
作者
Alpay, D [1 ]
Dubi, C [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1090/S0002-9939-05-07839-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the uniqueness of commuting operators solving Gleason's problem for certain spaces of functions analytic in the unit ball.
引用
收藏
页码:3285 / 3293
页数:9
相关论文
共 10 条
[1]   Backward shift operator and finite dimensional de Branges Rovnyak spaces in the ball [J].
Alpay, D ;
Dubi, C .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 371 :277-285
[2]   Gleason's problem and homogeneous interpolation in Hardy and Dirichlet-type spaces of the ball [J].
Alpay, D ;
Kaptanoglu, HT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :654-672
[3]   Some finite-dimensional backward-shift-invariant subspaces in the ball and a related interpolation problem [J].
Alpay, D ;
Kaptanoglu, HT .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 42 (01) :1-21
[4]  
Alpay D., 2001, SCHUR ALGORITHM REPR
[5]   Leibenzon's backward shift and composition operators [J].
Doubtsov, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (12) :3495-3499
[6]  
Doubtsov E., 1998, Complex Var, V36, P27
[7]  
DYM H, 1989, C BOARD MATH SCI WAS, P4239
[8]  
GLEASON AM, 1964, J MATH MECH, V13, P125
[9]  
RUDIN W, 1980, FUNCTION THEORY UNIT
[10]  
Stout EL, 1971, THEORY UNIFORM ALGEB