On the Chaotic Behaviour of Discontinuous Systems

被引:29
作者
Battelli, Flaviano [1 ]
Feckan, Michal [2 ,3 ]
机构
[1] Univ Politecn Marche, Dipartimento Sci Matemat, I-60131 Ancona, Italy
[2] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
关键词
Bernouilli shift; Chaotic behaviour; Discontinuous systems; EXPONENTIAL DICHOTOMIES; MELNIKOV METHOD; BIFURCATIONS; ORBITS;
D O I
10.1007/s10884-010-9197-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We follow a functional analytic approach to study the problem of chaotic behaviour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C (1) homoclinic solution that crosses transversally the discontinuity manifold. We show that if a certain Melnikov function has a simple zero at some point, then the system has solutions that behave chaotically. Application of this result to quasi periodic systems are also given.
引用
收藏
页码:495 / 540
页数:46
相关论文
共 26 条
[1]  
[Anonymous], IEEE T CIRCUITS SYST
[2]  
[Anonymous], 1983, ALMOST PERIODIC FUNC
[3]  
[Anonymous], NONSMOOTH DYNAMICAL
[4]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[5]  
[Anonymous], REAL COMPLEX ANAL
[6]  
[Anonymous], TOPOL METHODS NONLIN
[7]  
AWREJCEWICZ J, 2006, MATH PROBL ENG
[8]   EXPONENTIAL DICHOTOMIES, HETEROCLINIC ORBITS, AND MELNIKOV FUNCTIONS [J].
BATTELLI, F ;
LAZZARI, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 86 (02) :342-366
[9]   Homoclinic trajectories in discontinuous systems [J].
Battelli, Flaviano ;
Feckan, Michal .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (02) :337-376
[10]  
Battelli F, 2002, ELECTRON J DIFFER EQ