On the Chaotic Behaviour of Discontinuous Systems

被引:28
作者
Battelli, Flaviano [1 ]
Feckan, Michal [2 ,3 ]
机构
[1] Univ Politecn Marche, Dipartimento Sci Matemat, I-60131 Ancona, Italy
[2] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Inst Math, Bratislava 81473, Slovakia
关键词
Bernouilli shift; Chaotic behaviour; Discontinuous systems; EXPONENTIAL DICHOTOMIES; MELNIKOV METHOD; BIFURCATIONS; ORBITS;
D O I
10.1007/s10884-010-9197-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We follow a functional analytic approach to study the problem of chaotic behaviour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C (1) homoclinic solution that crosses transversally the discontinuity manifold. We show that if a certain Melnikov function has a simple zero at some point, then the system has solutions that behave chaotically. Application of this result to quasi periodic systems are also given.
引用
收藏
页码:495 / 540
页数:46
相关论文
共 26 条