Admissible Complexes for the Projective X-ray Transform over a Finite Field

被引:0
作者
Feldman, David, V [1 ]
Grinberg, Eric L. [2 ]
机构
[1] Univ New Hampshire, Dept Math, Kingsbury Hall, Durham, NH 03824 USA
[2] Univ Massachusetts, Dept Math, 100 Morrissey Blvd, Boston, MA 02125 USA
关键词
Radon transform; X-ray transform; Integral geometry; Admissibility; Line complexes; Projective spaces; Finite fields; Doubly ruled quadric surfaces;
D O I
10.1007/s00454-020-00207-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the X-ray transform in a projective space over a finite field. It is well known (after Bolker) that this transform is injective. We formulate an analog of Gelfand's admissibility problem for the Radon transform, which asks for a classification of all minimal sets of lines for which the restricted Radon transform is injective. The solution involves doubly ruled quadric surfaces.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 8 条
  • [1] [Anonymous], 1917, J MATH PHYS
  • [2] Bolker D., 1987, INTEGRAL GEOMETRY CO, V63, P27, DOI DOI 10.1090/CONM/063/876312
  • [3] GELFAND IM, 1961, DOKL AKAD NAUK SSSR+, V138, P1266
  • [4] Gelfand IM., 1966, Integral Geometry and Representation Theory: Generalized functions
  • [5] THE ADMISSIBILITY THEOREM FOR THE HYPERPLANE TRANSFORM OVER A FINITE-FIELD
    GRINBERG, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) : 316 - 320
  • [6] Grinberg E.L., 2012, MATH LEGACY LEON EHR, V16, P111, DOI [10.1007/978-88-470-1947-8_8, DOI 10.1007/978-88-470-1947-8_8]
  • [7] KIRILLOV AA, 1961, DOKL AKAD NAUK SSSR+, V137, P276
  • [8] Kung J.P., 1990, CONT MATH, V113, P1