Disturbance decoupling for linear time-invariant systems: a matrix pencil approach

被引:29
作者
Chu, D [1 ]
Mehrmann, V
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Tech Univ Berlin, Fachbereich Math 3, D-10623 Berlin, Germany
关键词
condensed form; descriptor systems; disturbance decoupling; orthogonal matrix transformation; pole assignment; stabilization;
D O I
10.1109/9.920805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we give a systematic new analysis of disturbance decoupling problems for standard linear time-invariant systems based on the theory of matrix pencils. This approach is based on the computation of condensed forms under orthogonal equivalence transformations. From these forms, that can be computed in a numerically stable way, we obtain new necessary and sufficient conditions that are numerically verifiable, and, furthermore, we immediately obtain numerically stable algorithms to compute the desired compensators, We present a numerical example that demonstrates the properties of the new approach.
引用
收藏
页码:802 / 808
页数:7
相关论文
共 27 条
[1]   CONSTRUCTION AND PARAMETERIZATION OF ALL STATIC AND DYNAMIC H-2-OPTIMAL STATE FEEDBACK SOLUTIONS, OPTIMAL FIXED MODES, AND FIXED DECOUPLING ZEROS [J].
CHEN, BM ;
SABERI, A ;
SANNUTI, P ;
SHAMASH, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) :248-261
[2]   Non-iterative computation of infimum in discrete-time H-infinity-optimization and solvability conditions for the discrete-time disturbance decoupling problem [J].
Chen, BM ;
Guo, Y ;
Lin, ZL .
INTERNATIONAL JOURNAL OF CONTROL, 1996, 65 (03) :433-454
[3]  
CHU D, 1998, 9818 TU CHEMN ZWICK
[4]  
CHU D, 1997, 977 TU CHEMN ZWICK F
[5]   Disturbance decoupling for descriptor systems by state feedback [J].
Chu, DL ;
Mehrmann, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (06) :1830-1858
[6]  
Demmel J. W., 1993, ACM T MATH SOFTWARE
[7]   DISTURBANCE DECOUPLING PROBLEMS BY MEASUREMENT FEEDBACK - A CHARACTERIZATION OF ALL SOLUTIONS AND FIXED MODES [J].
ELDEM, V ;
OZGULER, AB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (01) :168-185
[8]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[9]  
ILNNEMANN A, 1987, IEEE T AUTOMAT CONTR, V32, P922
[10]   DISTURBANCE LOCALIZATION AND POLE SHIFTING BY DYNAMIC COMPENSATION [J].
IMAI, H ;
AKASHI, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (01) :226-235