ASYMPTOTIC INTERPLAY OF STATES AND ADAPTIVE COUPLING GAINS IN THE LOHE HERMITIAN SPHERE MODEL

被引:0
作者
Byeon, Junhyeok [1 ]
Ha, Seung-Yeal [1 ,2 ]
Park, Hansol [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Simon Fraser Univ, Dept Math, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 11期
基金
新加坡国家研究基金会;
关键词
Emergence; Lohe Hermitian sphere model; synchronization; complex vector; tensor; PHASE-LOCKED STATES; KURAMOTO MODEL; SYNCHRONIZATION; OSCILLATORS; DYNAMICS; STABILITY; EMERGENCE; BEHAVIOR;
D O I
10.3934/dcdsb.2022007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study emergent dynamics of the Lohe Hermitian sphere (LHS) model with the same free flows under the dynamic interplay between state evolution and adaptive couplings. The LHS model is a complex counterpart of the Lohe sphere (LS) model on the unit sphere in Euclidean space, and when particles lie in the Euclidean unit sphere embedded in Cd+1, it reduces to the Lohe sphere model. In the absence of interactions between states and coupling gains, emergent dynamics have been addressed in [23]. In this paper, we further extend earlier results in the aforementioned work to the setting in which the state and coupling gains are dynamically interrelated via two types of coupling laws, namely anti-Hebbian and Hebbian coupling laws. In each case, we present two sufficient frameworks leading to complete aggregation depending on the coupling laws, when the corresponding free flow is the same for all particles.
引用
收藏
页码:6501 / 6538
页数:38
相关论文
共 39 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives [J].
Albi, G. ;
Bellomo, N. ;
Fermo, L. ;
Ha, S. -Y. ;
Kim, J. ;
Pareschi, L. ;
Poyato, D. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (10) :1901-2005
[3]  
[Anonymous], 1975, Mathematical aspects of heart physiology
[4]  
AOKI I, 1982, B JPN SOC SCI FISH, V48, P1081
[5]  
Barbalat I., 1959, Revue Roumaine de Mathmatique Pures et Appliques, V4, P267
[6]   ON THE COMPLETE PHASE SYNCHRONIZATION FOR THE KURAMOTO MODEL IN THE MEAN-FIELD LIMIT [J].
Benedetto, Dario ;
Caglioti, Emanuele ;
Montemagno, Umberto .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) :1775-1786
[7]   A Matrix-Valued Kuramoto Model [J].
Bronski, Jared C. ;
Carty, Thomas E. ;
Simpson, Sarah E. .
JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) :595-624
[8]   BIOLOGY OF SYNCHRONOUS FLASHING OF FIREFLIES [J].
BUCK, J ;
BUCK, E .
NATURE, 1966, 211 (5049) :562-&
[9]   Complete Entrainment of Lohe Oscillators under Attractive and Repulsive Couplings [J].
Choi, Sun-Ho ;
Ha, Seung-Yeal .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (04) :1417-1441
[10]   Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model [J].
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Jung, Sungeun ;
Kim, Yongduck .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) :735-754