When do finite Blaschke products commute?

被引:6
作者
Chalendar, I
Mortini, R
机构
[1] Univ Lyon 1, Inst Girard Desargues, UFR Math, F-69622 Villeurbanne, France
[2] Univ Metz, Dept Math, F-57045 Metz, France
关键词
D O I
10.1017/S0004972700039861
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following questions. Which finite Blaschke products are eigenvectors of the composition operators T-u: f --> f ou, what are the possible eigenvalues, and which pairs (B, C) of finite Blaschke products commute (that is, satisfy B o C = C o B).
引用
收藏
页码:189 / 200
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1993, UNIVERSITEXT TRACT
[2]   Commuting finite Blaschke products [J].
Arteaga, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :549-552
[3]   COMMUTING ANALYTIC-FUNCTIONS WITHOUT FIXED-POINTS [J].
BEHAN, DF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 37 (01) :114-120
[4]  
Cassier G., 2000, ComplexVar. Theory Appl., V42, P193
[5]   COMMUTING ANALYTIC-FUNCTIONS [J].
COWEN, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 283 (02) :685-695
[6]  
Craighead R.L., 1995, COMPLEX VAR THEORY A, V26, P333
[7]   Absolutely continuous conjugacies of Blaschke products [J].
Hamilton, DH .
ADVANCES IN MATHEMATICS, 1996, 121 (01) :1-20
[8]   ABSOLUTELY CONTINUOUS CONJUGACIES OF BLASCHKE PRODUCTS .2. [J].
HAMILTON, DH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 :279-285
[9]  
HAMILTON DH, 1994, J ANAL MATH, V63, P333
[10]   COMMUTING ENDOMORPHISMS OF THE CIRCLE [J].
JOHNSON, ASA ;
RUDOLPH, DJ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :743-748