Optimizing Trajectories for Cranial Laser Interstitial Thermal Therapy Using Computer-Assisted Planning: A Machine Learning Approach

被引:22
作者
Li, Kuo [1 ]
Vakharia, Vejay N. [2 ,3 ]
Sparks, Rachel [4 ,5 ]
Franca, Lucas G. S. [2 ]
Granados, Alejandro [4 ]
McEvoy, Andrew W. [2 ,3 ]
Miserocchi, Anna [2 ,3 ]
Wang, Maode [1 ]
Ourselin, Sebastien [5 ]
Duncan, John S. [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Affiliated Hosp 1, Xian, Shaanxi, Peoples R China
[2] UCL Inst Neurol, Dept Clin & Expt Epilepsy, 33 Queen Sq, London WC1E 6BT, England
[3] Natl Hosp Neurol & Neurosurg, Queen Sq, London, England
[4] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci WEISS, London, England
[5] Kings Coll London, Sch Biomed Engn & Imaging Sci, St Thomas Hosp, London, England
基金
英国惠康基金;
关键词
Machine learning; LITT; MTLE; epilepsy; laser ablation; TEMPORAL-LOBE EPILEPSY; INTRACRANIAL ELECTRODES; SURGICAL-TREATMENT; AMYGDALOHIPPOCAMPOTOMY; ABLATION; SURGERY; LESIONS; SAFETY;
D O I
10.1007/s13311-018-00693-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Laser interstitial thermal therapy (LITT) is an alternative to open surgery for drug-resistant focal mesial temporal lobe epilepsy (MTLE). Studies suggest maximal ablation of the mesial hippocampal head and amygdalohippocampal complex (AHC) improves seizure freedom rates while better neuropsychological outcomes are associated with sparing of the parahippocampal gyrus (PHG). Optimal trajectories avoid sulci and CSF cavities and maximize distance from vasculature. Computer-assisted planning (CAP) improves these metrics, but the combination of entry and target zones has yet to be determined to maximize ablation of the AHC while sparing the PHG. We apply a machine learning approach to predict entry and target parameters and utilize these for CAP. Ten patients with hippocampal sclerosis were identified from a prospectively managed database. CAP LITT trajectories were generated using entry regions that include the inferior occipital, middle occipital, inferior temporal, and middle temporal gyri. Target points were varied by sequential AHC erosions and transformations of the centroid of the amygdala. A total of 7600 trajectories were generated, and ablation volumes of the AHC and PHG were calculated. Two machine learning approaches (random forest and linear regression) were investigated to predict composite ablation scores and determine entry and target point combinations that maximize ablation of the AHC while sparing the PHG. Random forest and linear regression predictions had a high correlation with the calculated values in the test set (=0.7) for both methods. Maximal composite ablation scores were associated with entry points around the junction of the inferior occipital, middle occipital, and middle temporal gyri. The optimal target point was the anteromesial amygdala. These parameters were then used with CAP to generate clinically feasible trajectories that optimize safety metrics. Machine learning techniques accurately predict composite ablation score. Prospective studies are required to determine if this improves seizure-free outcome while reducing neuropsychological morbidity following LITT for MTLE.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 38 条
[1]   Radiosurgery versus open surgery for mesial temporal lobe epilepsy: The randomized, controlled ROSE trial [J].
Barbaro, Nicholas M. ;
Quigg, Mark ;
Ward, Mariann M. ;
Chang, Edward F. ;
Broshek, Donna K. ;
Langfitt, John T. ;
Yan, Guofen ;
Laxer, Kenneth D. ;
Cole, Andrew J. ;
Sneed, Penny K. ;
Hess, Christopher P. ;
Yu, Wei ;
Tripathi, Manjari ;
Heck, Christianne N. ;
Miller, John W. ;
Garcia, Paul A. ;
McEvoy, Andrew ;
Fountain, Nathan B. ;
Salanova, Vincenta ;
Knowlton, Robert C. ;
Bagic, Anto ;
Henry, Thomas ;
Kapoor, Siddharth ;
McKhann, Guy ;
Palade, Adriana E. ;
Reuber, Markus ;
Tecoma, Evelyn .
EPILEPSIA, 2018, 59 (06) :1198-1207
[2]   A multi-modal approach to computer-assisted deep brain stimulation trajectory planning [J].
Beriault, Silvain ;
Al Subaie, Fahd ;
Collins, D. Louis ;
Sadikot, Abbas F. ;
Pike, G. Bruce .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2012, 7 (05) :687-704
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Burgos N, 2013, LECT NOTES COMPUT SC, V8149, P147, DOI 10.1007/978-3-642-40811-3_19
[5]   Stereoelectroencephalography: Surgical Methodology, Safety, and Stereotactic Application Accuracy in 500 Procedures [J].
Cardinale, Francesco ;
Cossu, Massimo ;
Castana, Laura ;
Casaceli, Giuseppe ;
Schiariti, Marco Paolo ;
Miserocchi, Anna ;
Fuschillo, Dalila ;
Moscato, Alessio ;
Caborni, Chiara ;
Arnulfo, Gabriele ;
Lo Russo, Giorgio .
NEUROSURGERY, 2013, 72 (03) :353-366
[6]   Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion [J].
Cardoso, M. Jorge ;
Modat, Marc ;
Wolz, Robin ;
Melbourne, Andrew ;
Cash, David ;
Rueckert, Daniel ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) :1976-1988
[7]   COMPUTER-ASSISTED STEREOTACTIC BIOPSY OF INTRACRANIAL LESIONS IN PEDIATRIC-PATIENTS [J].
DAVIS, DH ;
KELLY, PJ ;
MARSH, WR ;
KALL, BA ;
GOERSS, SJ .
PEDIATRIC NEUROSCIENCE, 1988, 14 (01) :31-36
[8]   Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG) [J].
De Momi, E. ;
Caborni, C. ;
Cardinale, F. ;
Casaceli, G. ;
Castana, L. ;
Cossu, M. ;
Mai, R. ;
Gozzo, F. ;
Francione, S. ;
Tassi, L. ;
Lo Russo, G. ;
Antiga, L. ;
Ferrigno, G. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (06) :1087-1097
[9]   Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy [J].
Drane, Daniel L. ;
Loring, David W. ;
Voets, Natalie L. ;
Price, Michele ;
Ojemann, Jeffrey G. ;
Willie, Jon T. ;
Saindane, Amit M. ;
Phatak, Vaishali ;
Ivanisevic, Mirjana ;
Millis, Scott ;
Helmers, Sandra L. ;
Miller, John W. ;
Meador, Kimford J. ;
Gross, Robert E. .
EPILEPSIA, 2015, 56 (01) :101-113
[10]  
Drane DL, 2017, EPILEPSY RES