Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering

被引:53
作者
Buinevich, V. S. [1 ]
Nepapushev, A. A. [1 ]
Moskovskikh, D. O. [1 ]
Trusov, G., V [1 ]
Kuskov, K., V [1 ]
Vadchenko, S. G. [2 ]
Rogachev, A. S. [2 ]
Mukasyan, A. S. [3 ]
机构
[1] Natl Univ Sci & Technol MISIS, Moscow 119049, Russia
[2] Russian Acad Sci, Inst Struct Macrokinet & Mat Sci, Moscow 142432, Russia
[3] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
俄罗斯科学基金会;
关键词
Ultra-high-temperature ceramics; Hafnium carbonitride; High-energy ball milling; Combustion synthesis; Spark plasma sintering; C SYSTEM; TANTALUM; STABILITY; CERAMICS; PROPERTY; NIOBIUM; POWDERS; SHS;
D O I
10.1016/j.ceramint.2020.03.158
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, nonstoichiometric hafnium carbonitrides (HfCxNy) were fabricated via short-term (5 min) high-energy ball milling of Hf and C powders, followed by combustion of mechanically induced Hf/C composite particles in a nitrogen atmosphere (0.8 MPa). The obtained HfC0.5N0.35 powder exhibited a rock-salt crystal structure with a lattice parameter of 0.4606 nm. The melting point of this synthesized ceramic material was experimentally shown to be higher than that of binary hafnium carbide (HfC). The nonstoichiometric hafnium carbonitride was then consolidated under a constant pressure of 50 MPa at a temperature of 2000 degrees C and a dwelling time of 10 min, through spark plasma sintering. The obtained bulk ceramic material had a theoretical material density of 98%, Vickers hardness of 21.3 GPa, and fracture toughness of 4.7 MPa m(1/2).
引用
收藏
页码:16068 / 16073
页数:6
相关论文
共 41 条
[1]   Spark Plasma Sintering of Titanium Spherical Particles [J].
Abedi, Mohammad ;
Moskovskikh, Dmitry O. ;
Rogachev, Alexander S. ;
Mukasyan, Alexander S. .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2016, 47 (05) :2725-2731
[2]  
[Anonymous], 2017, CONCISE ENCY SELF PR
[3]  
Binner J., 2019, INT MATER REV, P1, DOI [10.1111/ijac.12000, DOI 10.1080/09506608.2019.1652006]
[4]   CHEMICAL CLASSES OF THE SHS PROCESSES AND MATERIALS [J].
BOROVINSKAYA, IP .
PURE AND APPLIED CHEMISTRY, 1992, 64 (07) :919-940
[5]   Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system [J].
Cedillos-Barraza, Omar ;
Manara, Dario ;
Boboridis, K. ;
Watkins, Tyson ;
Grasso, Salvatore ;
Jayaseelan, Daniel D. ;
Konings, Rudy J. M. ;
Reece, Michael J. ;
Lee, William E. .
SCIENTIFIC REPORTS, 2016, 6
[6]   Structural, electronic, mechanical and thermo-physical properties of TMN (TM = Ti, Zr and Hf) under high pressures: A first-principle study [J].
Chauhan, Mamta ;
Gupta, Dinesh C. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 42 :77-90
[7]   Synthesis of a cubic Ti(BCN) advanced ceramic by a solid-gas mechanochemical reaction [J].
Chicardi, E. ;
Garcia-Garrido, C. ;
Beltran, A. M. ;
Sayagues, M. J. ;
Gotor, F. J. .
CERAMICS INTERNATIONAL, 2019, 45 (03) :3878-3885
[8]  
Córdoba JM, 2007, J AM CERAM SOC, V90, P381, DOI [10.1111/j.1551-2916.2006.01395.x, 10.1111/j.1551.2916.2006.01395.x]
[9]  
Dyjak S, 2015, CENT EUR J ENERG MAT, V12, P249
[10]   THE MECHANISM OF COMBUSTION SYNTHESIS OF TITANIUM CARBONITRIDE [J].
ESLAMLOOGRAMI, M ;
MUNIR, ZA .
JOURNAL OF MATERIALS RESEARCH, 1994, 9 (02) :431-435