Dynamic switching surfaces for output sliding mode control: An H∞ approach

被引:21
作者
Castanos, Fernando [1 ]
Fridman, Leonid [2 ]
机构
[1] McGill Ctr Intelligent Machines, Montreal, PQ H3A 2A7, Canada
[2] CINVESTAV IPN, Dept Automat Control, Mexico City, DF, Mexico
关键词
Sliding-mode control; Dynamic output feedback; H-infinity; SYSTEMS;
D O I
10.1016/j.automatica.2011.05.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The robustness properties of sliding-mode and H-infinity controllers are exploited to produce a dynamic output feedback controller that is insensitive to matched perturbations and attenuates the unmatched ones. The assumptions on the plant differ from the standard assumptions of the Riccati state-space approach to H-infinity control. The sliding-mode controller drives the state into a reduced-order manifold for which the equivalent system does satisfy the standard assumptions and hence the standard theory can be applied. The resulting Riccati equations are of reduced order. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1957 / 1961
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 1971, Generalized Inverses of Matrices and its Applications
[2]   LQG CONTROL WITH AN H-INFINITY PERFORMANCE BOUND - A RICCATI EQUATION APPROACH [J].
BERNSTEIN, DS ;
HADDAD, WM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) :293-305
[3]   Nonlinear, integral-type sliding surface for both matched and unmatched uncertain systems [J].
Cao, WJ ;
Xu, JX .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (08) :1355-1360
[4]  
CASTANOS F, 2004, P VAR STRUCT SYST WO
[5]   Analysis and design of integral sliding manifolds for systems with unmatched perturbations [J].
Castanos, Fernando ;
Fridman, Leonid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :853-858
[6]   Sliding-Mode Output Feedback Control Design [J].
Choi, Han Ho .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) :4047-4054
[7]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[8]  
Doyle JC., 2013, Feedback control theory
[9]  
Edwards C, 1998, Sliding mode control: theory and applications
[10]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448