A sharp bilinear restriction estimate for paraboloids

被引:218
作者
Tao, T [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
D O I
10.1007/s00039-003-0449-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently Wolff [W3] obtained a sharp L-2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of "elliptic surfaces" such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon the known restriction theory for the paraboloid and sphere.
引用
收藏
页码:1359 / 1384
页数:26
相关论文
共 30 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
[Anonymous], 2001, NOTICES AM MATH SOC
[3]   A REMARK ON SCHRODINGER-OPERATORS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) :1-16
[4]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[5]  
Bourgain J., 1995, OPERATOR THEORY ADV, V79, P41
[6]  
Bourgain J., 2000, MATH FRONTIERS PERSP, P13
[7]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[8]  
BOURGAIN J, 1995, ESSAYS FOURIER ANAL, P83
[9]   RESTRICTION IMPLIES BOCHNER-RIESZ FOR PARABOLOIDS [J].
CARBERY, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :525-529
[10]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+