Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants -: Induction by chemicals and methyl jasmonate

被引:49
作者
Kandel, S
Morant, M
Benveniste, I
Blée, E
Werck-Reichhart, D
Pinot, F
机构
[1] IBMP, CNRS,UPR 2357, Inst Bot, Dept Response Metab Environm Biot, F-67083 Strasbourg, France
[2] Royal Vet & Agr Univ, Dept Plant Biol, DK-1871 Frederiksberg, Denmark
关键词
D O I
10.1074/jbc.M500918200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We cloned and characterized CYP709C1, a new plant cytochrome P450 belonging to the P450 family, that so far has no identified function except for clustering with a fatty acid metabolizing clade of P450 enzymes. We showed here that CYP709C1 is capable of hydroxylating fatty acids at the omega-1 and omega-2 positions. This work was performed after recoding and heterologous expression of a full-length cDNA isolated from a wheat cDNA library in an engineered yeast strain. Investigation on substrate specificity indicates that CYP709C1 metabolizes different fatty acids varying in their chain length (C12 to C18) and unsaturation. CYP709C1 is the first identified plant cytochrome P450 that can catalyze sub-terminal hydroxylation of C18 fatty acids. cis-9,10-Epoxystearic acid is metabolized with the highest efficiency, i.e. K-m(app) of 8 mu M and V-max(app) of 328 nmol/min/nmol P450. This, together with the fact that wheat possesses amicrosomal peroxygenase able to synthesize this compound from oleic acid, strongly suggests that it is a physiological substrate. Hydroxylated fatty acids are implicated in plant defense events. We postulated that CYP709C1 could be involved in plant defense by producing such compounds. This receives support from the observation that (i) sub-terminal hydroxylation of 9,10-epoxystearic acid is induced (15-fold after 3 h) in microsomes of wheat seedlings treated with the stress hormone methyl jasmonate and (ii) CYP709C1 is enhanced at the transcriptional level by this treatment. CYP709C1 transcript also accumulated after treatment with a combination of the safener naphthalic acid anhydride and phenobarbital. This indicates a possible detoxifying function for CYP709C1 that we discussed.
引用
收藏
页码:35881 / 35889
页数:9
相关论文
共 58 条
[1]   Labeling of major plant lipids and jasmonic acid using [1-14C] lauric acid [J].
Afitlhile, MM ;
Fukushige, H ;
Hildebrand, D .
PHYTOCHEMISTRY, 2004, 65 (19) :2679-2684
[2]   CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase [J].
Benveniste, I ;
Tijet, N ;
Adas, F ;
Philipps, G ;
Salaün, JP ;
Durst, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 243 (03) :688-693
[3]   CYTOCHROME P-450-DEPENDENT OMEGA-HYDROXYLATION OF LAURIC ACID BY MICROSOMES FROM PEA-SEEDLINGS [J].
BENVENISTE, I ;
SALAUN, JP ;
REICHHART, D ;
DURST, F .
PLANT PHYSIOLOGY, 1982, 70 (01) :122-126
[4]  
BLEE E, 1990, J BIOL CHEM, V265, P12887
[5]   Impact of phyto-oxylipins in plant defense [J].
Blée, E .
TRENDS IN PLANT SCIENCE, 2002, 7 (07) :315-321
[6]   Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids [J].
Cabello-Hurtado, F ;
Batard, Y ;
Salaün, JP ;
Durst, F ;
Pinot, F ;
Werck-Reichhart, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (13) :7260-7267
[7]  
CAJACOB CA, 1988, J BIOL CHEM, V263, P18640
[8]   Microsomal cytochrome P450 and eicosanoid metabolism [J].
Capdevila, JH ;
Harris, RC ;
Falck, JR .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (05) :780-789
[9]   Cytochrome P-450-dependent HETEs: Profile of biological activity and stimulation by vasoactive peptides [J].
Carroll, MA ;
Balazy, M ;
Margiotta, P ;
Huang, DD ;
Falck, JR ;
McGiff, JC .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1996, 271 (04) :R863-R869
[10]   CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes ω- and (ω-1)-hydroxylation of fatty acids [J].
Chuang, SS ;
Helvig, C ;
Taimi, M ;
Ramshaw, HA ;
Collop, AH ;
Amad, M ;
White, JA ;
Petkovich, M ;
Jones, G ;
Korczak, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (08) :6305-6314