Minimal sets and chaos in planar piecewise smooth vector fields

被引:12
作者
Carvalho, Tiago [1 ]
Euzebio, Rodrigo Donizete [2 ]
机构
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Av Bandeirantes, BR-14098322 Ribeirao Preto, SP, Brazil
[2] IME UFG, Dept Matemat, Campus Samambaia, BR-74001970 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
vector fields; piecewise smooth vector fields; chaos; minimal sets; SYSTEMS;
D O I
10.14232/ejqtde.2020.1.33
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some aspects concerning chaos and minimal sets in discontinuous dynamical systems are addressed. The orientability dependence of trajectories sliding trough some variety is exploited and new phenomena emerging from this situation are highlighted. In particular, although chaotic flows and nontrivial minimal sets are not allowed for smooth vector fields in the plane, the existence of such objects for some classes of vector fields is verified. A characterization of chaotic flows in terms of orientable minimal sets is also provided. The main feature of the dynamical systems under study is related to the non uniqueness of trajectories in some zero measure region as well as the orientation of orbits reaching such region.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1962, Topology, DOI 10.1016/0040-9383(65)90018-2
[2]  
Brogliato B, 2016, COMMUN CONTROL ENG, P1, DOI 10.1007/978-3-319-28664-8
[3]   ON POINCARE BENDIXSON THEOREM AND NON-TRIVIAL MINIMAL SETS IN PLANAR NONSMOOTH VECTOR FIELDS [J].
Buzzi, Claudio A. ;
Carvalho, Tiago ;
Euzebio, Rodrigo D. .
PUBLICACIONS MATEMATIQUES, 2018, 62 (01) :113-131
[4]   Chaotic planar piecewise smooth vector fields with non-trivial minimal sets [J].
Buzzi, Claudio A. ;
De Carvalho, Tiago ;
Euzebio, Rodrigo D. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 :458-469
[5]   Birth of limit cycles bifurcating from a nonsmooth center [J].
Buzzi, Claudio A. ;
de Carvalho, Tiago ;
Teixeira, Marco A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (01) :36-47
[6]  
CASTRO FLA, 2014, INT J BIFURCAT CHAOS, V24
[7]   Nondeterministic Chaos, and the Two-fold Singularity in Piecewise Smooth Flows [J].
Colombo, Alessandro ;
Jeffrey, Mike R. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (02) :423-451
[8]   On the Closing Lemma for planar piecewise smooth vector fields [J].
de Carvalho, Tiago .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (06) :1174-1185
[9]  
Della Rossa F, 2012, IEEE DECIS CONTR P, P7714, DOI 10.1109/CDC.2012.6425950
[10]   Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations [J].
Di Bernardo, M ;
Johansson, KH ;
Vasca, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04) :1121-1140