Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer

被引:122
作者
Shi, An-Ping [1 ,2 ]
Tang, Xi-Yang [3 ]
Xiong, Yan-Lu [3 ]
Zheng, Kai-Fu [3 ]
Liu, Yu-Jian [3 ]
Shi, Xian-Gui [4 ]
Lv, Yao [4 ]
Jiang, Tao [3 ]
Ma, Nan [5 ]
Zhao, Jin-Bo [3 ]
机构
[1] Air Force Med Univ, Fourth Mil Med Univ, Dept Radiol, Xian, Peoples R China
[2] Air Force Med Univ, Fourth Mil Med Univ, Tangdu Hosp, Funct & Mol Imaging Key Lab Shaanxi Prov, Xian, Peoples R China
[3] Air Force Med Univ, Tangdu Hosp, Dept Thorac Surg, Xian, Peoples R China
[4] Air Force Med Univ, Coll Basic Med, Xian, Peoples R China
[5] Air Force Med Univ, Tangdu Hosp, Dept Ophthalmol, Xian, Peoples R China
关键词
LAG3; FGL1; immune checkpoint; immune therapy; immune response; tumor; CD8(+) T-CELLS; INHIBITORY RECEPTORS; MOLECULAR-CLONING; EXPRESSION; PROTEIN; RESPONSES; TIM-3; GENE; PD-1; GAMMA;
D O I
10.3389/fimmu.2021.785091
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.
引用
收藏
页数:11
相关论文
共 98 条
[21]   Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma [J].
Froehlich, Anne ;
Sirokay, Judith ;
Fietz, Simon ;
Vogt, Timo J. ;
Dietrich, Joern ;
Zarbl, Romina ;
Florin, Mike ;
Kuster, Pia ;
Saavedra, Gonzalo ;
Valladolid, Susana Ramirez ;
Hoffmann, Friederike ;
Flatz, Lukas ;
Ring, Sandra S. ;
Golletz, Carsten ;
Pietsch, Torsten ;
Strieth, Sebastian ;
Brossart, Peter ;
Gielen, Gerrit H. ;
Kristiansen, Glen ;
Bootz, Friedrich ;
Landsberg, Jennifer ;
Dietrich, Dimo .
EBIOMEDICINE, 2020, 59
[22]   Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity [J].
Gaublomme, Jellert T. ;
Yosef, Nir ;
Lee, Youjin ;
Gertner, Rona S. ;
Yang, Li V. ;
Wu, Chuan ;
Pandolfi, Pier Paolo ;
Mak, Tak ;
Satija, Rahul ;
Shalek, Alex K. ;
Kuchroo, Vijay K. ;
Park, Hongkun ;
Regev, Aviv .
CELL, 2015, 163 (06) :1400-1412
[23]   LAG3's Enigmatic Mechanism of Action [J].
Graydon, Colin G. ;
Mohideen, Shifa ;
Fowke, Keith R. .
FRONTIERS IN IMMUNOLOGY, 2021, 11
[24]   Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8+T cells in hepatocellular carcinoma using multiplex quantitative analysis [J].
Guo, Mengzhou ;
Yuan, Feifei ;
Qi, Feng ;
Sun, Jialei ;
Rao, Qianwen ;
Zhao, Zhiying ;
Huang, Peixin ;
Fang, Tingting ;
Yang, Biwei ;
Xia, Jinglin .
JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
[25]   Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up (vol 28, pg 119, 2017) [J].
Haanen, J. B. A. G. ;
Carbonnel, F. ;
Robert, C. ;
Kerr, K. M. ;
Peters, S. ;
Larkin, J. ;
Jordan, K. .
ANNALS OF ONCOLOGY, 2018, 29 :264-266
[26]  
Hannier S, 1998, J IMMUNOL, V161, P4058
[27]   Molecular cloning and functional expression analysis of a cDNA for human hepassocin, a liver-specific protein with hepatocyte mitogenic activity [J].
Hara, H ;
Yoshimura, H ;
Uchida, S ;
Toyoda, Y ;
Aoki, M ;
Sakai, Y ;
Morimoto, S ;
Shiokawa, K .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2001, 1520 (01) :45-53
[28]   Characterization of the major histocompatibility complex class II binding site on LAG-3 protein [J].
Huard, B ;
Mastrangeli, R ;
Prigent, P ;
Bruniquel, D ;
Donini, S ;
ElTayar, N ;
Maigret, B ;
Dreano, M ;
Triebel, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5744-5749
[29]   CD4/MAJOR HISTOCOMPATIBILITY COMPLEX CLASS-II INTERACTION ANALYZED WITH CD4 AND LYMPHOCYTE-ACTIVATION GENE-3 (LAG-3)-IG FUSION PROTEINS [J].
HUARD, B ;
PRIGENT, P ;
TOURNIER, M ;
BRUNIQUEL, D ;
TRIEBEL, F .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1995, 25 (09) :2718-2721
[30]   T cell major histocompatibility complex class II molecules down-regulate CD4(+) T cell clone responses following LAG-3 binding [J].
Huard, B ;
Prigent, P ;
Pages, F ;
Bruniquel, D ;
Triebel, F .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1996, 26 (05) :1180-1186