Thermodynamic and Elastic Properties of Magnesite at Mantle Conditions: First-Principles Calculations

被引:28
作者
Yao, Chao [1 ,2 ]
Wu, Zhongqing [1 ,2 ]
Zou, Fan [1 ,2 ]
Sun, Weidong [3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Sch Earth & Space Sci, Lab Seismol & Phys Earths Interior, Hefei, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Earth & Space Sci, Mengcheng Natl Geophys Observ, Hefei, Anhui, Peoples R China
[3] Chinese Acad Sci, Inst Oceanog, Ctr Deep Sea Res, Qingdao, Peoples R China
[4] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao, Peoples R China
[5] Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
EQUATION-OF-STATE; HIGH-PRESSURE BEHAVIOR; X-RAY-DIFFRACTION; THERMOELASTIC PROPERTIES; ELECTRON-DENSITY; HIGH-TEMPERATURE; EARTHS MANTLE; HARTREE-FOCK; CALCITE; MGCO3;
D O I
10.1029/2017GC007396
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Magnesite (MgCO3) is a likely main host of carbonates in the mantle and plays an important role in the transport and storage of carbon in the Earth's mantle. Its physical properties at high pressure and high temperature (PT) are crucial for understanding the deep carbon cycle. Here we investigated thermodynamic and elastic properties of magnesite under the mantle PT conditions using first-principles calculations with local density approximation (LDA). Magnesite has the seismic velocities close to those of forsterite. The effect of the magnesite on seismic velocity of the carbonated peridotite and eclogite is subtle in the upper mantle. However, magnesite has much smaller seismic velocities and far larger elastic anisotropy than major minerals in the transition zone and lower mantle. The enrichment of magnesite in the transition zone and lower mantle will likely produce seismically detectable low-velocity zone and velocity anisotropy.
引用
收藏
页码:2719 / 2731
页数:13
相关论文
共 77 条
[1]  
[Anonymous], 1970, Crystal Acoustics
[2]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[3]   THERMOELASTIC PROPERTIES OF SOME CUBIC CLOSE-PACKED LATTICES [J].
BARRON, THK ;
KLEIN, ML .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1965, 85 (545P) :533-&
[4]   Experimental determination of the solubility product of magnesite at 50 to 200 °C [J].
Benezeth, Pascale ;
Saldi, Giuseppe D. ;
Dandurand, Jean-Louis ;
Schott, Jacques .
CHEMICAL GEOLOGY, 2011, 286 (1-2) :21-31
[5]   INTERNALLY-CONSISTENT THERMODYNAMIC DATA FOR MINERALS IN THE SYSTEM NA2O-K2O-CAO-MGO-FEO-FE2O3-AL2O3-SIO2-TIO2-H2O-CO2 [J].
BERMAN, RG .
JOURNAL OF PETROLOGY, 1988, 29 (02) :445-522
[6]   New host for carbon in the deep Earth [J].
Boulard, Eglantine ;
Gloter, Alexandre ;
Corgne, Alexandre ;
Antonangeli, Daniele ;
Auzende, Anne-Line ;
Perrillat, Jean-Philippe ;
Guyot, Francois ;
Fiquet, Guillaume .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (13) :5184-5187
[7]   First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3 [J].
Brik, M. G. .
PHYSICA B-CONDENSED MATTER, 2011, 406 (04) :1004-1012
[8]   Deep Carbon Emissions from Volcanoes [J].
Burton, Michael R. ;
Sawyer, Georgina M. ;
Granieri, Domenico .
CARBON IN EARTH, 2013, 75 :323-354
[9]   STATIC LATTICE AND ELECTRON PROPERTIES OF MGCO3 (MAGNESITE) CALCULATED BY ABINITIO PERIODIC HARTREE-FOCK METHODS [J].
CATTI, M ;
PAVESE, A ;
DOVESI, R ;
SAUNDERS, VR .
PHYSICAL REVIEW B, 1993, 47 (15) :9189-9198
[10]  
CATTI M, 1993, PHYS CHEM MINER, V20, P104