The equivariant cohomology of weighted flag orbifolds

被引:0
作者
Azam, Haniya [1 ]
Nazir, Shaheen [1 ]
Qureshi, Muhammad Imran [1 ,2 ]
机构
[1] LUMS, SBASSE, Dept Math, Lahore, Pakistan
[2] Univ Tubingen, Math Inst, Tubingen, Germany
关键词
Weighted flag varieties; Equivariant cohomology; Schubert classes; Double Schubert polynomials; CONSTRUCTING PROJECTIVE VARIETIES; RING;
D O I
10.1007/s00209-019-02285-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the torus-equivariant cohomology of weighted partial flag orbifolds w Sigma of type A. We establish counterparts of several results known for the partial flag variety that collectively constitute what we refer to as "Schubert Calculus on w Sigma ". For the weighed Schubert classes in w Sigma, we give the Chevalley's formula. In addition, we define the weighted analogue of double Schubert polynomials and give the corresponding Chevalley-Monk's formula.
引用
收藏
页码:881 / 900
页数:20
相关论文
共 30 条
[1]   Schur polynomials and weighted Grassmannians [J].
Abe, Hiraku ;
Matsumura, Tomoo .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) :875-892
[2]   Equivariant Cohomology of Weighted Grassmannians and Weighted Schubert Classes [J].
Abe, Hiraku ;
Matsumura, Tomoo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) :2499-2524
[3]  
Alberto A, 1986, CR HEBD ACAD SCI, V302, P631
[4]  
[Anonymous], 1997, YOUNG TABLEAUX APPLI
[5]  
Atiyah M.F., 1994, COLLECTED PAPERS, V241
[6]  
Azam H., SCHUBERT CALCULUS WE
[7]   ZEROS IN A VECTOR FIELD AND EQUIVARIANT CHARACTERISTIC CLASSES [J].
BERLINE, N ;
VERGNE, M .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) :539-549
[8]  
BOREL A, 1960, MICH MATH J, V7, DOI [10.1307/mmj/1028998385.110, DOI 10.1307/MMJ/1028998385.110]
[9]  
Borel A., 1960, SEM TRANSF GROUPS, VAM-46
[10]  
Bredon G. E., 1972, INTRO COMPACT TRANSF