Large area flexible SERS active substrates using engineered nanostructures

被引:92
作者
Chung, Aram J. [1 ]
Huh, Yun Suk [1 ,2 ]
Erickson, David [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Korea Basic Sci Inst, Div Mat Sci, Taejon 305333, South Korea
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ENHANCED RAMAN-SPECTROSCOPY; SINGLE-MOLECULE; SCATTERING; ARRAYS; DNA; NANOPARTICLES; ELECTRODES; MONOLAYERS; FILM;
D O I
10.1039/c1nr10265f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface enhanced Raman scattering (SERS) is an analytical sensing method that provides label-free detection, molecularly specific information, and extremely high sensitivity. The Raman enhancement that makes this method attractive is mainly attributed to the local amplification of the incident electromagnetic field that occurs when a surface plasmon mode is excited at a metallic nanostructure. Here, we present a simple, cost effective method for creating flexible, large area SERS-active substrates using a new technique we call shadow mask assisted evaporation (SMAE). The advantage of large, flexible SERS substrates such as these is they have more area for multiplexing and can be incorporated into irregular surfaces such as clothing. We demonstrate the formation of four different types of nanostructure arrays (pillar, nib, ellipsoidal cylinder, and triangular tip) by controlling the evaporation angle, substrate rotation, and deposition rate of metals onto anodized alumina nanoporous membranes as large as 27 mm. In addition, we present experimental results showing how a hybrid structure comprising of gold nanospheres embedded in a silver nano-pillar structure can be used to obtain a 50 x SERS enhancement over the raw nanoparticles themselves.
引用
收藏
页码:2903 / 2908
页数:6
相关论文
共 40 条
[1]   Gold nanorings as substrates for surface-enhanced Raman scattering [J].
Banaee, Mohamad G. ;
Crozier, Kenneth B. .
OPTICS LETTERS, 2010, 35 (05) :760-762
[2]   Surface-enhanced Raman spectroscopy of DNA [J].
Barhoumi, Aoune ;
Zhang, Dongmao ;
Tam, Felicia ;
Halas, Naomi J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (16) :5523-5529
[3]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[4]   Surface-Enhanced Raman Spectroscopic Detection of a Bacteria Biomarker Using Gold Nanoparticle Immobilized Substrates [J].
Cheng, Han-Wen ;
Huan, Shuang-Yan ;
Wu, Hai-Long ;
Shen, Guo-Li ;
Yu, Ru-Qin .
ANALYTICAL CHEMISTRY, 2009, 81 (24) :9902-9912
[5]   Shadow Overlap Ion-beam Lithography for Nanoarchitectures [J].
Choi, Yeonho ;
Hong, Soongweon ;
Lee, Luke P. .
NANO LETTERS, 2009, 9 (11) :3726-3731
[6]   Single-Order, Subwavelength Resonant Nanograting as a Uniformly Hot Substrate for Surface-Enhanced Raman Spectroscopy [J].
Deng, Xuegong ;
Braun, Gary B. ;
Liu, Sheng ;
Sciortino, Paul F., Jr. ;
Koefer, Bob ;
Tombler, Thomas ;
Moskovits, Martin .
NANO LETTERS, 2010, 10 (05) :1780-1786
[7]   Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].
Dick, LA ;
McFarland, AD ;
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (04) :853-860
[8]   SELF-ASSEMBLED METAL COLLOID MONOLAYERS - AN APPROACH TO SERS SUBSTRATES [J].
FREEMAN, RG ;
GRABAR, KC ;
ALLISON, KJ ;
BRIGHT, RM ;
DAVIS, JA ;
GUTHRIE, AP ;
HOMMER, MB ;
JACKSON, MA ;
SMITH, PC ;
WALTER, DG ;
NATAN, MJ .
SCIENCE, 1995, 267 (5204) :1629-1632
[9]   New approaches to nanofabrication: Molding, printing, and other techniques [J].
Gates, BD ;
Xu, QB ;
Stewart, M ;
Ryan, D ;
Willson, CG ;
Whitesides, GM .
CHEMICAL REVIEWS, 2005, 105 (04) :1171-1196
[10]   Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering [J].
Gunnarsson, L ;
Bjerneld, EJ ;
Xu, H ;
Petronis, S ;
Kasemo, B ;
Käll, M .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :802-804