Simulation of Atmospheric Motion Vectors for an Observing System Simulation Experiment

被引:13
作者
Errico, Ronald M. [1 ,2 ]
Carvalho, David [2 ,3 ]
Prive, Nikki C. [1 ,2 ]
Sienkiewicz, Meta [2 ,4 ]
机构
[1] Morgan State Univ, Goddard Earth Sci Technol & Res Ctr, Baltimore, MD 21239 USA
[2] NASA Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[3] Univ Space Res Assoc, Goddard Earth Sci Technol & Res Ctr, Columbia, MD USA
[4] Sci Syst & Applicat Inc, Lanham, MD USA
关键词
Algorithms; Satellite observations; Model initialization; Numerical analysis; modeling;
D O I
10.1175/JTECH-D-19-0079.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
An algorithm to simulate locations of atmospheric motion vectors for use in observing system simulation experiments is described and demonstrated. It is intended to obviate likely deficiencies in nature run data if used to produce images for feature tracking. The algorithm employs probabilistic functions that are tuned based on distributions of real observations and histograms of nature run fields. For distinct observation types, the algorithm produces geographical and vertical distributions, time-mean counts, and typical spacings of simulated locations that are, at least qualitatively, similar to those of real observations and are associated with nature run cloud and water vapor fields. It thus appears suitable for generating realistic atmospheric motion vectors for use in observing system simulation experiments.
引用
收藏
页码:489 / 505
页数:17
相关论文
共 9 条
  • [1] Errico R., 2018, WMO WWRP Rep. 2018-8
  • [2] Errico R. M., 2017, NASA Tech. Rep. NASA/TM-2017-104606, V48
  • [3] Development and validation of observing-system simulation experiments at NASA's Global Modeling and Assimilation Office
    Errico, Ronald M.
    Yang, Runhua
    Prive, Nikki C.
    Tai, King-Sheng
    Todling, Ricardo
    Sienkiewicz, Meta E.
    Guo, Jing
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2013, 139 (674) : 1162 - 1178
  • [4] Forsyth M., 2007, P ECMWF SEM REC DEV, P59
  • [5] Understanding Atmospheric Motion Vector Vertical Representativity Using a Simulation Study and First-Guess Departure Statistics
    Lean, Peter
    Migliorini, Stefano
    Kelly, Graeme
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2015, 54 (12) : 2479 - 2500
  • [6] Assimilation Experiments of MTSAT Rapid Scan Atmospheric Motion Vectors on a Heavy Rainfall Event
    Otsuka, Michiko
    Kunii, Masaru
    Seko, Hiromu
    Shimoji, Kazuki
    Hayashi, Masahiro
    Yamashita, Koji
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2015, 93 (04) : 459 - 475
  • [7] Putman W., 2014, 5 GMAO
  • [8] Rienecker MM, 2008, TECHNICAL REPORT SER, V27
  • [9] Recent innovations in deriving tropospheric winds from meteorological satellites
    Velden, C
    Daniels, J
    Stettner, D
    Santek, D
    Key, J
    Dunion, J
    Holmlund, K
    Dengel, G
    Bresky, W
    Menzel, P
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (02) : 205 - +