Orbifold quantum cohomology of weighted projective spaces

被引:36
作者
Mann, Etienne
机构
[1] SISSA, I-34014 Trieste
[2] Département de Mathématiques, Université de Montpellier 2, F-34 095 Montpellier Cedex 5, CC 5149, Place Eugène Bataillon
关键词
D O I
10.1090/S1056-3911-07-00465-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the following results. We show a mirror theorem: the Frobenius manifold associated to the orbifold quantum cohomology of weighted projective spaces is isomorphic to the one attached to a specific Laurent polynomial. We show a reconstruction theorem; that is, we can reconstruct in an algorithmic way the full genus 0 Gromov-Witten potential from the 3-point invariants.
引用
收藏
页码:137 / 166
页数:30
相关论文
共 25 条
[1]  
ABRAMOVICH D, 2006, MATHAG0010157, P57
[2]  
BARANNIKOV S, 2000, MATHAG0010157, P17
[3]   The orbifold Chow ring of toric Deligne-Mumford stacks [J].
Borisov, LA ;
Chen, L ;
Smith, GG .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) :193-215
[4]   A deRham model for Chen-Ruan cohomology ring of Abelian orbifolds [J].
Chen, Bohui ;
Hu, Shengda .
MATHEMATISCHE ANNALEN, 2006, 336 (01) :51-71
[5]   A new cohomology theory of orbifold [J].
Chen, WM ;
Ruan, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) :1-31
[6]  
CHEN WM, 2001, ORBIFOLDS MATH PHYS, V310, P25
[7]  
COATES T, 2006, MATHAG0608481, V336, P51
[8]  
DOUAI A, 2003, ANN I FOURIER GRENOB, P1055
[9]  
DOUAI A, 2004, ASPECTS MATH E, V36, P1
[10]  
Dubrovin B., 1996, LECT NOTES MATH, V1620, P120