Machine learning applications in prostate cancer magnetic resonance imaging

被引:145
作者
Cuocolo, Renato [1 ]
Cipullo, Maria Brunella [1 ]
Stanzione, Arnaldo [1 ]
Ugga, Lorenzo [1 ]
Romeo, Valeria [1 ]
Radice, Leonardo [1 ]
Brunetti, Arturo [1 ]
Imbriaco, Massimo [1 ]
机构
[1] Univ Naples Federico II, Dept Adv Biomed Sci, Via S Pansini 5, I-80131 Naples, Italy
关键词
Machine learning; Magnetic resonance imaging; Prostate; Prostatic neoplasms; Radiomics; PI-RADS V2; MRI; FEATURES; GUIDELINES; RADIOMICS; BIOPSIES; IMPROVE; SYSTEM; IMAGES;
D O I
10.1186/s41747-019-0109-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
With this review, we aimed to provide a synopsis of recently proposed applications of machine learning (ML) in radiology focusing on prostate magnetic resonance imaging (MRI). After defining the difference between ML and classical rule-based algorithms and the distinction among supervised, unsupervised and reinforcement learning, we explain the characteristic of deep learning (DL), a particular new type of ML, including its structure mimicking human neural networks and its 'black box' nature. Differences in the pipeline for applying ML and DL to prostate MRI are highlighted. The following potential clinical applications in different settings are outlined, many of them based only on MRI-unenhanced sequences: gland segmentation; assessment of lesion aggressiveness to distinguish between clinically significant and indolent cancers, allowing for active surveillance; cancer detection/diagnosis and localisation (transition versus peripheral zone, use of prostate imaging reporting and data system (PI-RADS) version 2), reading reproducibility, differentiation of cancers from prostatitis benign hyperplasia; local staging and pre-treatment assessment (detection of extraprostatic disease extension, planning of radiation therapy); and prediction of biochemical recurrence. Results are promising, but clinical applicability still requires more robust validation across scanner vendors, field strengths and institutions.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer [J].
Abdollahi, Hamid ;
Mofid, Bahram ;
Shiri, Isaac ;
Razzaghdoust, Abolfazl ;
Saadipoor, Afshin ;
Mahdavi, Arash ;
Galandooz, Hassan Maleki ;
Mahdavi, Seied Rabi .
RADIOLOGIA MEDICA, 2019, 124 (06) :555-567
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[4]   A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images [J].
Alkadi, Ruba ;
Taher, Fatma ;
El-baz, Ayman ;
Werghi, Naoufel .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (05) :793-807
[5]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[6]   Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use [J].
Barentsz, Jelle O. ;
Weinreb, Jeffrey C. ;
Verma, Sadhna ;
Thoeny, Harriet C. ;
Tempany, Clare M. ;
Shtern, Faina ;
Padhani, Anwar R. ;
Margolis, Daniel ;
Macura, Katarzyna J. ;
Haider, Masoom A. ;
Cornud, Francois ;
Choyke, Peter L. .
EUROPEAN UROLOGY, 2016, 69 (01) :41-49
[7]   A Prospective Comparison of Selective Multiparametric Magnetic Resonance Imaging Fusion-Targeted and Systematic Transrectal Ultrasound-Guided Biopsies for Detecting Prostate Cancer in Men Undergoing Repeated Biopsies [J].
Boesen, Lars ;
Norgaard, Nis ;
Logager, Vibeke ;
Balslev, Ingegerd ;
Thomsen, Henrik S. .
UROLOGIA INTERNATIONALIS, 2017, 99 (04) :384-391
[8]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[9]   Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography [J].
Burstroem, Gustav ;
Buerger, Christian ;
Hoppenbrouwers, Jurgen ;
Nachabe, Rami ;
Lorenz, Cristian ;
Babic, Drazenko ;
Homan, Robert ;
Racadio, John M. ;
Grass, Michael ;
Persson, Oscar ;
Edstrom, Erik ;
Terander, Adrian Elmi .
JOURNAL OF NEUROSURGERY-SPINE, 2019, 31 (01) :147-154
[10]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207