The Merrifield-Simmons index in (n,n+1)-graphs

被引:35
作者
Deng, Hanyuan [1 ]
Chen, Shubo [1 ]
Zhang, Jie [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
(n; n+1)-graph; Merrifield-Simmons index;
D O I
10.1007/s10910-006-9180-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A (n, n + 1)-graph G is a connected simple graph with n vertices and n + 1 edges. In this paper, we determine the upper bound for the Merrifield-Simmons index in (n, n + 1) - graphs in terms of the order n, and characterize the (n, n + 1) - graph with the largest Merrifield-Simmons index.
引用
收藏
页码:75 / 91
页数:17
相关论文
共 13 条
[1]  
CHEN S, 2006, UNPUB J MATH CHEM
[2]  
GUTMAN I, 1991, REV ROUM CHIM, V36, P379
[3]  
GUTMAN I, 1990, COLL SCI PAP FAC SCI, V11, P11
[4]  
LI X, 1996, AUSTRALASIAN J COMB, V14, P15
[5]  
Li XL, 2005, MATCH-COMMUN MATH CO, V54, P389
[6]   The inverse problems for some topological indices in combinatorial chemistry [J].
Li, XL ;
Li, ZM ;
Wang, LS .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (01) :47-55
[7]  
Merrifield R.E., 1989, TOPOLOGICAL METHODS
[8]   THE STRUCTURES OF MOLECULAR TOPOLOGICAL-SPACES [J].
MERRIFIELD, RE ;
SIMMONS, HE .
THEORETICA CHIMICA ACTA, 1980, 55 (01) :55-75
[9]   The number of independent sets in unicyclic graphs [J].
Pedersen, AS ;
Vestergaard, PD .
DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) :246-256
[10]  
PRODINGER H, 1982, FIBONACCI QUART, V20, P16