Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence

被引:41
作者
Haggerty, C. C. [1 ]
Parashar, T. N. [1 ]
Matthaeus, W. H. [1 ]
Shay, M. A. [1 ]
Yang, Y. [1 ]
Wan, M. [2 ]
Wu, P. [3 ]
Servidio, S. [4 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA
[2] South Univ Sci & Technol China, Dept Mech & Aerosp Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[4] Univ Calabria, Dipartimento Fis, Cosenza, Italy
基金
美国国家科学基金会;
关键词
COLLISIONLESS; DISSIPATION; SYSTEM;
D O I
10.1063/1.5001722
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Magnetic reconnection is a ubiquitous phenomenon in turbulent plasmas. It is an important part of the turbulent dynamics and heating of space and astrophysical plasmas. We examine the statistics of magnetic reconnection using a quantitative local analysis of the magnetic vector potential, previously used in magnetohydrodynamics simulations, and now employed to fully kinetic particle-in-cell (PIC) simulations. Different ways of reducing the particle noise for analysis purposes, including multiple smoothing techniques, are explored. We find that a Fourier filter applied at the Debye scale is an optimal choice for analyzing PIC data. Finally, we find a broader distribution of normalized reconnection rates compared to the MHD limit with rates as large as 0.5 but with an average of approximately 0.1. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter [J].
Aluie, Hussein ;
Eyink, Gregory L. .
PHYSICS OF FLUIDS, 2009, 21 (11) :1-16
[2]   Turbulence and cooling in galaxy cluster cores [J].
Banerjee, Nilanjan ;
Sharma, Prateek .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (01) :687-697
[3]  
Birdsall C. K., 1985, PLASMA PHYS VIA COMP, P20
[4]   MAGNETIC RECONNECTION VIA CURRENT SHEETS [J].
BISKAMP, D .
PHYSICS OF FLUIDS, 1986, 29 (05) :1520-1531
[5]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[6]   On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods [J].
Camporeale, E. ;
Delzanno, G. L. ;
Bergen, B. K. ;
Moulton, J. D. .
COMPUTER PHYSICS COMMUNICATIONS, 2016, 198 :47-58
[7]   THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE [J].
Chen, C. H. K. ;
Mallet, A. ;
Schekochihin, A. A. ;
Horbury, T. S. ;
Wicks, R. T. ;
Bale, S. D. .
ASTROPHYSICAL JOURNAL, 2012, 758 (02)
[8]   TURBULENCE VISCOSITY AND DISSIPATION IN SOLAR-WIND PLASMA [J].
COLEMAN, PJ .
ASTROPHYSICAL JOURNAL, 1968, 153 (2P1) :371-&
[9]   EVOLUTION OF THE ORSZAG-TANG VORTEX SYSTEM IN A COMPRESSIBLE MEDIUM .1. INITIAL AVERAGE SUBSONIC FLOW [J].
DAHLBURG, RB ;
PICONE, JM .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (11) :2153-2171
[10]   Transition from collisional to kinetic regimes in large-scale reconnection layers [J].
Daughton, W. ;
Roytershteyn, V. ;
Albright, B. J. ;
Karimabadi, H. ;
Yin, L. ;
Bowers, Kevin J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (06)