High thermal conductivity and low leakage phase change materials filled with three-dimensional carbon fiber network

被引:9
作者
Guo, Leyang [1 ]
Wang, Ying [1 ]
Shi, Shanshan [1 ]
Gao, Yuan [1 ,2 ]
Jiang, Tao [1 ]
Wu, Xinfeng [1 ]
Kai, Sun [1 ]
Zhao, Yuantao [1 ]
Yang, Ke [3 ]
Li, Wenge [1 ]
Yu, Jinhong [4 ]
机构
[1] Shanghai Maritime Univ, Coll Ocean Sci & Engn, Merchant Marine Coll, Shanghai 201306, Peoples R China
[2] COMAC Shanghai Aircraft Mfg Co Ltd, Purchasing & Supplying Logist Ctr Dept, Shanghai, Peoples R China
[3] Cent South Univ, Sch Mat Sci & Engn, Changsha, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Key Lab Marine Mat & Protect Technol, Key Lab Marine Mat & Related Technol, Ningbo 315201, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
PCMS; thermal energy storage; composite; carbon fiber network; thermal conductivity; ENERGY-STORAGE; COMPOSITE; TEMPERATURE; FABRICATION; FOAM; NANOPARTICLES; VERMICULITE; ENHANCEMENT; VISCOSITY;
D O I
10.1080/1536383X.2021.1966420
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As one of the most effective energy storage compounds, phase change materials (PCMS) play an important role in energy conservation and storage. However, the inherent poor thermal conductivity and liquid leakage of PCMS seriously limit their practical application. Polyethylene glycol center dot calcium chloride (PEG center dot CaCl2) phase change materials filled with three-dimensional carbon fiber network were prepared by liquid phase impregnation and hot pressing molding method. The experimental results show that carbon fiber network (CF felt) and PEG center dot CaCl2 complex structure increase the thermal conductivity and stability. The in-plane thermal conductivity of PEG center dot CaCl2/CF composite (47.73% carbon content) is 0.97 W/mK, about 103% higher than that of PEG. PEG center dot CaCl2/CF composite does not present leakage even heating at 80 degrees C for 45 min (35 degrees C higher than the melting point of pure PEG), showing low leakage ability. High thermal conductivity, low leakage and low density of this composite suggest a promising route for thermal storage applications.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 71 条
[51]   Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride [J].
Wang, Weilong ;
Yang, Xiaoxi ;
Fang, Yutang ;
Ding, Jing ;
Yan, Jinyue .
APPLIED ENERGY, 2009, 86 (7-8) :1196-1200
[52]   Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance [J].
Wang, X. L. ;
Li, B. ;
Qu, Z. G. ;
Zhang, J. F. ;
Jin, Z. G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 155
[53]   Phase change material with flexible crosslinking for thermal energy storage [J].
Wang, Yi ;
Yuan, Anqian ;
Zhao, Yuanyang ;
Liu, Qinfeng ;
Lei, Jingxin .
JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (13)
[54]   Effect of Fabrication Methodology on Morphology, Conductivity, and Thermal-Energy Storage of a Stearic Acid/Doped-Polyaniline Phase-Change Material [J].
Wang, Yi ;
Ji, Hui ;
Zhang, Ting ;
Shi, Huan ;
Zhang, Deyi ;
Feng, Huixia .
ENERGY TECHNOLOGY, 2015, 3 (07) :734-742
[55]   Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity [J].
Wei, Lien Chin ;
Malen, Jonathan A. .
APPLIED ENERGY, 2016, 181 :224-231
[56]   Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials [J].
Wen, Ruilong ;
Huang, Zhaohui ;
Huang, Yaoting ;
Zhang, Xiaoguang ;
Min, Xin ;
Fang, Minghao ;
Liu, Yan'gai ;
Wu, Xiaowen .
ENERGY AND BUILDINGS, 2016, 116 :677-683
[57]   3D Thermal Network Supported by CF Felt for Improving the Thermal Performance of CF/C/Epoxy Composites [J].
Wu, Xinfeng ;
Gao, Yuan ;
Jiang, Tao ;
Zheng, Lingyu ;
Wang, Ying ;
Tang, Bo ;
Sun, Kai ;
Zhao, Yuantao ;
Li, Wenge ;
Yang, Ke ;
Yu, Jinhong .
POLYMERS, 2021, 13 (06)
[58]   Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks [J].
Wu, Xinfeng ;
Tang, Bo ;
Chen, Jin ;
Shan, Liming ;
Gao, Yuan ;
Yang, Ke ;
Wang, Ying ;
Sun, Kai ;
Fan, Runhua ;
Yu, Jinhong .
COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 203
[59]   Influence of Alumina Content and Thermal Treatment on the Thermal Conductivity of UPE/Al2O3 Composite [J].
Wu, Xinfeng ;
Jiang, Pingkai ;
Zhou, Yun ;
Yu, Jinhong ;
Zhang, Fuhua ;
Dong, Lihua ;
Yin, Yansheng .
JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (15)
[60]   Preparation of carbon nanotube/copper/carbon fiber hierarchical composites by electrophoretic deposition for enhanced thermal conductivity and interfacial properties [J].
Yan, Fei ;
Liu, Liu ;
Li, Ming ;
Zhang, Mengjie ;
Xiao, Linghan ;
Ao, Yuhui .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (11) :8108-8119