Genus 3 mapping class groups are not Kahler

被引:11
作者
Hain, Richard [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
TORELLI GROUP; COHOMOLOGY; MODULI; ABELIANIZATION; COEFFICIENTS; HOMOLOGY;
D O I
10.1112/jtopol/jtu020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that finite index subgroups of genus 3 mapping class and Torelli groups that contain the group generated by Dehn twists on bounding simple closed curves are not Kahler. These results are deduced from explicit presentations of the unipotent (aka, Malcev) completion of genus 3 Torelli groups and of the relative completions of genus 3 mapping class groups. The main results follow from the fact that these presentations are not quadratic. To complete the picture, we compute presentations of completed Torelli and mapping class in genera at least 4; they are quadratic. We also show that groups commensurable with hyperelliptic mapping class groups and mapping class groups in genera at most 2 are not Kahler.
引用
收藏
页码:213 / 246
页数:34
相关论文
共 35 条
[1]  
[Anonymous], 1974, GRUNDLEHREN MATH WIS
[2]   ON THE FUNDAMENTAL GROUP OF A COMPACT KAHLER MANIFOLD [J].
ARAPURA, D ;
BRESSLER, P ;
RAMACHANDRAN, M .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (03) :477-488
[3]  
Asada M., 1987, ADV STUDIES PURE MAT, V12, P137
[4]  
Birman J., 1971, Advances in the Theory of Riemann Surfaces, P81
[5]   Galois covers of moduli of curves [J].
Boggi, M ;
Pikaart, M .
COMPOSITIO MATHEMATICA, 2000, 120 (02) :171-191
[6]   Fundamental groups of moduli stacks of stable curves of compact type [J].
Boggi, Marco .
GEOMETRY & TOPOLOGY, 2009, 13 :247-276
[7]   REAL HOMOTOPY THEORY OF KAHLER MANIFOLDS [J].
DELIGNE, P ;
GRIFFITHS, P ;
MORGAN, J ;
SULLIVAN, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :245-274
[8]  
Deligne P., 1974, Inst. Hautes Etudes Sci. Publ. Math, P5, DOI 10.1007/BF02684692
[9]   The abelianization of the Johnson kernel [J].
Dimca, Alexandru ;
Hain, Richard ;
Papadima, Stefan .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) :805-822
[10]  
GORESKY M, 1988, ERGEBNISSE MATH IHRE, V14