A new proof of Wojcicka's conjecture

被引:9
作者
Chen, YJ [1 ]
Tian, F
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
domination-critical graph; closure operation; Hamiltonian cycle;
D O I
10.1016/S0166-218X(02)00387-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is 3-domination-critical if its domination number gamma is 3 and the addition of any edge decreases gamma by 1. Wojcicka conjectured that every 3-domination-critical graph with delta greater than or equal to 2 has a hamiltonian cycle (J. Graph Theory 14 (1990) 205-215). The conjecture had been proved and its proof consists of two parts: the case alpha less than or equal to delta + I (J. Graph Theory 25 (1997) 173-184) and the case alpha = delta + 2 (Discrete Appl. Math. 92 (1999) 57-70). In this paper, we give a new and simple proof of the conjecture by using Hanson's (J. Combin. Math. Combin. Comput. 13 (1993) 121-128) and Bondy-Chvatal's (Discrete Math. 15(1976) 111-135) closure operations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 10 条
[1]  
[Anonymous], J COMBIN MATH COMBIN
[2]   METHOD IN GRAPH THEORY [J].
BONDY, JA ;
CHVATAL, V .
DISCRETE MATHEMATICS, 1976, 15 (02) :111-135
[3]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[4]  
Favaron O, 1997, J GRAPH THEOR, V25, P173, DOI 10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO
[5]  
2-D
[6]   Some properties of 3-domination-critical graphs [J].
Flandrin, E ;
Tian, F ;
Wei, B ;
Zhang, L .
DISCRETE MATHEMATICS, 1999, 205 (1-3) :65-76
[7]   DOMINATION CRITICAL GRAPHS [J].
SUMNER, DP ;
BLITCH, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) :65-76
[8]   Hamiltonicity in 3-domination-critical graphs with α=δ+2 [J].
Tian, F ;
Wei, B ;
Zhang, L .
DISCRETE APPLIED MATHEMATICS, 1999, 92 (01) :57-70
[9]   HAMILTONIAN PROPERTIES OF DOMINATION-CRITICAL GRAPHS [J].
WOJCICKA, E .
JOURNAL OF GRAPH THEORY, 1990, 14 (02) :205-215
[10]  
ZHANG LZ, IN PRESS DISCRETE MA