High-Temperature Perovskite Solar Cells

被引:35
作者
Dong, Zijing [1 ]
Li, Weiping [1 ]
Wang, Hailiang [1 ]
Jiang, Xiaoyu [2 ]
Liu, Huicong [1 ]
Zhu, Liqun [1 ]
Chen, Haining [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Army Acad Armored Forces, Dept Informat Commun, Beijing 100072, Peoples R China
来源
SOLAR RRL | 2021年 / 5卷 / 09期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
carbon nanotubes; CsPbI2Br perovskites; high-temperature operation; perovskite solar cells; space exploration; OPTICAL-ABSORPTION EDGE; CH3NH3PBI3; PEROVSKITE; PERFORMANCE; DEPENDENCE; COEFFICIENTS; PARAMETERS; DISORDER; IODIDE; SIZE;
D O I
10.1002/solr.202100370
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Herein, high-temperature (over 200 degrees C) perovskite solar cells (PSCs) are fabricated and studied for the first time. Inorganic CsPbI2Br perovskite is used as absorber and carbon nanotubes (CNTs) are directly used as the hole extraction electrode. Such device retains over 80% of its initial power conversion efficiency (PCE) after heating at 200 degrees C for 45 h, enabling its operation at high temperatures. By recording reverse and forward J-V curves at different temperatures (25-220 degrees C), temperature coefficients of photovoltaic parameters are obtained. Compared with conventional high-temperature solar cells (Si, CuInGaSe, and GaAs), CsPbI2Br devices show superior V-OC and FF temperature coefficients but inferior J(SC) temperature coefficients. As a result, PCE temperature coefficients of CsPbI2Br devices are superior over Si and CuInGaSe solar cells, and are comparable with those of GaAs solar cells. Meanwhile, the mitigation of charge accumulation at elevated temperatures results in a gradual decrease in J-V hysteresis. Therefore, this study may expand the application of PSCs into high-temperature fields, such as space exploration.
引用
收藏
页数:7
相关论文
共 57 条
  • [1] Optical absorption edge of semi-insulating GaAs and InP at high temperatures
    Beaudoin, M
    DeVries, AJG
    Johnson, SR
    Laman, H
    Tiedje, T
    [J]. APPLIED PHYSICS LETTERS, 1997, 70 (26) : 3540 - 3542
  • [2] Perceiving the temperature coefficients of carbon-based perovskite solar cells
    Bhandari, Shubhranshu
    Roy, Anurag
    Ghosh, Aritra
    Mallick, Tapas Kumar
    Sundaram, Senthilarasu
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (12) : 6283 - 6298
  • [3] Bodnar I., 2018, 2018 19 INT CARP CON
  • [4] Basic aspects of the temperature coefficients of concentrator solar cell performance parameters
    Braun, Avi
    Katz, Eugene A.
    Gordon, Jeffrey M.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05): : 1087 - 1094
  • [5] Organic and perovskite solar cells for space applications
    Cardinaletti, Ilaria
    Vangerven, Tim
    Nagels, Steven
    Cornelissen, Rob
    Schreurs, Dieter
    Hruby, Jaroslav
    Vodnik, Jelle
    Devisscher, Dries
    Kesters, Jurgen
    D'Haen, Jan
    Franquet, Alexis
    Spampinato, Valentina
    Conard, Thierry
    Maes, Wouter
    Deferme, Wim
    Manca, Jean V.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 121 - 127
  • [6] Inorganic Perovskite Solar Cells: A Rapidly Growing Field
    Chen, Haining
    Xiang, Sisi
    Li, Weiping
    Liu, Huicong
    Zhu, Liqun
    Yang, Shihe
    [J]. SOLAR RRL, 2018, 2 (02):
  • [7] Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?
    Chen, Haining
    Yang, Shihe
    [J]. ADVANCED MATERIALS, 2017, 29 (24)
  • [8] Two-Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application
    Chen, Haining
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (08)
  • [9] High-quality perovskite in thick scaffold: a core issue for hole transport material-free perovskite solar cells
    Chen, Haining
    Yang, Shihe
    [J]. SCIENCE BULLETIN, 2016, 61 (21) : 1680 - 1688
  • [10] Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%
    Chen, Haining
    Wei, Zhanhua
    He, Hexiang
    Zheng, Xiaoli
    Wong, Kam Sing
    Yang, Shihe
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (08)