Hydrogen production by methanogens under low-hydrogen conditions

被引:42
作者
Valentine, DL [1 ]
Blanton, DC [1 ]
Reeburgh, WS [1 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92679 USA
基金
美国国家科学基金会;
关键词
methanogens; hydrogen production; storage compounds; anaerobic methane oxidation;
D O I
10.1007/s002030000224
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Hydrogen production was studied in four species of methanogens (Methanothermobacter marburgensis, Methanosaeta thermophila, Methanosarcina bar-keri, and Methanosaeta concilii) under conditions of low (sub-nanomolar) ambient hydrogen concentration using a specially designed culture apparatus. Transient hydrogen production was observed and quantified for each species studied. Methane was excluded as the electron source, as was all organic material added during growth of the cultures (acetate, yeast extract, peptone). Hydrogen production showed a strong temperature dependence, and production ceased at temperatures below the growth range of the organisms. Addition of polysulfides to the cultures greatly decreased hydrogen production. The addition of bromoethanesulfonic acid had little influence on hydrogen production. These experiments demonstrate that some methanogens produce excess reducing equivalents during growth and convert them to hydrogen when the ambient hydrogen concentration becomes low. The lack of sustained hydrogen production by the cultures in the presence of methane provides evidence against "reverse methanogenesis" as the mechanism for anaerobic methane oxidation.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 38 条
[1]   GROWTH OF METHANOSARCINA-BARKERI (FUSARO) UNDER NONMETHANOGENIC CONDITIONS BY THE FERMENTATION OF PYRUVATE TO ACETATE - ATP SYNTHESIS VIA THE MECHANISM OF SUBSTRATE LEVEL PHOSPHORYLATION [J].
BOCK, AK ;
SCHONHEIT, P .
JOURNAL OF BACTERIOLOGY, 1995, 177 (08) :2002-2007
[2]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[3]   EFFECTS OF HYDROGEN PRESSURE DURING GROWTH AND EFFECTS OF PREGROWTH WITH HYDROGEN ON ACETATE DEGRADATION BY METHANOSARCINA SPECIES [J].
BOONE, DR ;
MENAIA, JAGF ;
BOONE, JE ;
MAH, RA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (01) :83-87
[4]   DIFFUSION OF THE INTERSPECIES ELECTRON CARRIERS H-2 AND FORMATE IN METHANOGENIC ECOSYSTEMS AND ITS IMPLICATIONS IN THE MEASUREMENT OF KM FOR H-2 OR FORMATE UPTAKE [J].
BOONE, DR ;
JOHNSON, RL ;
LIU, Y .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (07) :1735-1741
[5]  
BOONE DR, 1987, PERSPECTIVES BIOTECH, P111
[6]   GROWTH OF DESULFOVIBRIO IN LACTATE OR ETHANOL MEDIA LOW IN SULFATE IN ASSOCIATION WITH H2-UTILIZING METHANOGENIC BACTERIA [J].
BRYANT, MP ;
CAMPBELL, LL ;
REDDY, CA ;
CRABILL, MR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1977, 33 (05) :1162-1169
[7]   INFLUENCE OF TEMPERATURE ON ENERGETICS OF HYDROGEN METABOLISM IN HOMOACETOGENIC, METHANOGENIC, AND OTHER ANAEROBIC-BACTERIA [J].
CONRAD, R ;
WETTER, B .
ARCHIVES OF MICROBIOLOGY, 1990, 155 (01) :94-98
[8]   THE CAPACITY OF HYDROGENOTROPHIC ANAEROBIC-BACTERIA TO COMPETE FOR TRACES OF HYDROGEN DEPENDS ON THE REDOX POTENTIAL OF THE TERMINAL ELECTRON-ACCEPTOR [J].
CORDRUWISCH, R ;
SEITZ, HJ ;
CONRAD, R .
ARCHIVES OF MICROBIOLOGY, 1988, 149 (04) :350-357
[9]   Anaerobic methane oxidation associated with marine gas hydrates:: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids [J].
Elvert, M ;
Suess, E ;
Whiticar, MJ .
NATURWISSENSCHAFTEN, 1999, 86 (06) :295-300
[10]   CARBON ISOTOPE FRACTIONATION BY METHANOBACTERIUM-THERMOAUTOTROPHICUM [J].
FUCHS, G ;
THAUER, R ;
ZIEGLER, H ;
STICHLER, W .
ARCHIVES OF MICROBIOLOGY, 1979, 120 (02) :135-139