PENALIZED VARIABLE SELECTION PROCEDURE FOR COX MODELS WITH SEMIPARAMETRIC RELATIVE RISK

被引:41
作者
Du, Pang [1 ]
Ma, Shuangge [2 ]
Liang, Hua [3 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] Yale Univ, Dept Epidemiol & Publ Hlth, Sch Med, New Haven, CT 06520 USA
[3] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA
关键词
Backfitting; partially linear models; penalized variable selection; proportional hazards; penalized partial likelihood; smoothing spline ANOVA; HAZARDS REGRESSION; PARTIAL LIKELIHOOD; LASSO;
D O I
10.1214/09-AOS780
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Cox models with semiparametric relative risk, which can be partially linear with one nonparametric component, or multiple additive or nonadditive nonparametric components. A penalized partial likelihood procedure is proposed to simultaneously estimate the parameters and select variables for both the parametric and the nonparametric parts. Two penalties are applied sequentially. The first penalty, governing the smoothness of the multivariate nonlinear covariate effect function, provides a smoothing spline ANOVA framework that is exploited to derive an empirical model selection tool for the nonparametric part. The second penalty, either the smoothly-clipped-absolute-deviation (SCAD) penalty or the adaptive LASSO penalty, achieves variable selection in the parametric part. We show that the resulting estimator of the parametric part possesses the oracle property, and that the estimator of the nonparametric part achieves the optimal rate of convergence. The proposed procedures are shown to work well in simulation experiments, and then applied to a real data example on sexually transmitted diseases.
引用
收藏
页码:2092 / 2117
页数:26
相关论文
共 36 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]  
[Anonymous], 1974, Variational methods for eigenvalue approximation
[3]  
Breiman L, 1996, ANN STAT, V24, P2350
[4]   Partially linear hazard regression for multivariate survival data [J].
Cai, Jianwen ;
Fan, Jianqing ;
Jiang, Jiancheng ;
Zhou, Haibo .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) :538-551
[5]   Vairiable selection for multivariate failure time data [J].
Cai, JW ;
Fan, JQ ;
Li, RZ ;
Zhou, HB .
BIOMETRIKA, 2005, 92 (02) :303-316
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]  
Fan JQ, 2002, ANN STAT, V30, P74
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]  
Fan JQ, 1997, ANN STAT, V25, P1661
[10]  
Gu C., 2002, SPR S STAT