Exact solution to the main turbulence problem for a compressible medium and the universal-8/3 law turbulence spectrum of breaking waves

被引:5
作者
Chefranov, Sergey G. [1 ,2 ,3 ]
Chefranov, Artem S. [4 ]
机构
[1] Russian Acad Sci, AM Obukhov Inst Atmospher Phys, Pizhevskii Per 3, Moscow 119007, Russia
[2] Russian New Univ, Radio Str 22, Moscow 105005, Russia
[3] Technion Israel Inst Technol, Phys Dept, IL-32000 Haifa, Israel
[4] Minist Nat Resources & Environm Russia Federat, B Gruzinskaya Str 4-6, Moscow 123242, Russia
基金
俄罗斯科学基金会; 以色列科学基金会;
关键词
STATISTICS; INTERMITTENCY; SINGULARITIES; MAGNETOSHEATH; BREAKDOWN; ONSAGER;
D O I
10.1063/5.0056291
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An exact analytical solution to the one-dimensional compressible Euler equations in the form of a nonlinear simple wave is obtained. In contrast to the well-known Riemann solution, the resulting solution and the time of its collapse t(0) have an explicit dependence on the initial conditions. For the non-zero dissipation the regularization of the solution over an unlimited time interval is justified. Based on this solution of the Euler equations, an exact explicit and closed description for any single- and multi-point characteristics of turbulence in a compressible medium are obtained, and Onsager's dissipative anomaly is considered. The exact turbulence energy universal spectrum E(k) proportional to/ k(-8/3), corresponding to the time t -> t(0) of the shock arising, is stated. That spectrum is more relevant to the strong acoustic turbulence than the well-known spectrum E(k) proportional to / k(-2). Installed, spectrum-8/3 is also matched with the observed compressible turbulence spectrum in the magnetosheath and solar wind. The turbulence energy dissipation rate fluctuations universal spectrum E(k) proportional to/ k(-2/3) is obtained and corresponds to the known observation data in the atmospheric surface layer.
引用
收藏
页数:19
相关论文
共 79 条
[1]   Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales [J].
Alexandrova, O. ;
Saur, J. ;
Lacombe, C. ;
Mangeney, A. ;
Mitchell, J. ;
Schwartz, S. J. ;
Robert, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[2]   Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations [J].
Alexandrova, O. ;
Lacombe, C. ;
Mangeney, A. .
ANNALES GEOPHYSICAE, 2008, 26 (11) :3585-3596
[3]   Compressible Turbulence: The Cascade and its Locality [J].
Aluie, Hussein .
PHYSICAL REVIEW LETTERS, 2011, 106 (17)
[4]  
[Anonymous], 2003, USP MAT NAUK, DOI DOI 10.4213/RM610
[5]  
[Anonymous], 1964, Isv. Akad. Nauk USSR, Ser. Geophys.
[6]   In Situ Observation of Hall Magnetohydrodynamic Cascade in Space Plasma [J].
Bandyopadhyay, Riddhi ;
Sorriso-Valvo, Luca ;
Chasapis, Alexandros ;
Hellinger, Petr ;
Matthaeus, William H. ;
Verdini, Andrea ;
Landi, Simone ;
Franci, Luca ;
Matteini, Lorenzo ;
Giles, Barbara L. ;
Gershman, Daniel J. ;
Moore, Thomas E. ;
Pollock, Craig J. ;
Russell, Christopher T. ;
Strangeway, Robert J. ;
Torbert, Roy B. ;
Burch, James L. .
PHYSICAL REVIEW LETTERS, 2020, 124 (22)
[7]   COLLISIONLESS DAMPING OF HYDROMAGNETIC WAVES [J].
BARNES, A .
PHYSICS OF FLUIDS, 1966, 9 (08) :1483-&
[8]   Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence [J].
Benzi, R. ;
Biferale, L. ;
Fisher, R. ;
Lamb, D. Q. ;
Toschi, F. .
JOURNAL OF FLUID MECHANICS, 2010, 653 :221-244
[9]   Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause [J].
Cattaneo, MBB ;
Basile, C ;
Moreno, G ;
Richardson, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A6) :11961-11972
[10]   The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves [J].
Chan, Wai Hong Ronald ;
Johnson, Perry L. ;
Moin, Parviz ;
Urzay, Javier .
JOURNAL OF FLUID MECHANICS, 2021, 912