Deformations of certain reducible Galois representations III

被引:1
作者
Ray, Anwesh [1 ]
机构
[1] Univ British Columbia, Math Dept, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
关键词
Galois representations; residually reducible; deformation theory; Serre's conjecture;
D O I
10.1142/S1793042121500445
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and q a power of p. We examine the deformation theory of reducible and indecomposable Galois representations (rho) over bar : G(Q) -> GSp(2n)(F-q) that are unramified outside a finite set of primes S and whose image lies in a Borel subgroup. We show that under some additional hypotheses, such representations have geometric lifts to the Witt vectors W(F-q). The main theorem of this paper is a higher- dimensional generalization of the result of [S. Hamblen and R. Ramakrishna, Deformations of certain reducible Galois II, Amer. J. Math. 130(4) (2008) 913-944] [5].
引用
收藏
页码:1429 / 1485
页数:57
相关论文
共 20 条
  • [1] Fakhruddin N., 2018, ARXIV181005803 ARXIV181005803
  • [2] Fakhruddin N., 2019, ARXIV190402374
  • [3] FONTAINE JM, 1995, SER NUM THEORY, V1, P41
  • [4] Hall B., 2015, LIE GROUPS LIE ALGEB, V222
  • [5] Hamblen S, 2008, AM J MATH, V130, P913
  • [6] Humphreys J.E., 2012, Introduction to Lie algebras and representation theory, V9
  • [7] Constructing semisimple p-adic galois representations with prescribed properties
    Khare, C
    Larsen, M
    Ramakrishna, R
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (04) : 709 - 734
  • [8] Serre's modularity conjecture (II)
    Khare, Chandrashekhar
    Wintenberger, Jean-Pierre
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (03) : 505 - 586
  • [9] Neukirch J, 2013, GRUNDLEHR MATH WISS, V323, P1, DOI 10.1007/978-3-540-37889-1
  • [10] Patrikis S., 2006, THESIS HARVARD COLL THESIS HARVARD COLL