A converse of asymptotic formulae in simultaneous approximation

被引:6
|
作者
Garrancho, P. [1 ]
Cardenas-Morales, D. [1 ]
机构
[1] Univ Jaen, Dept Matemat, Jaen 23071, Spain
关键词
Asymptotic formula; Shape preserving approximation; Simultaneous approximation; Saturation;
D O I
10.1016/j.amc.2010.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the general setting of simultaneous approximation by sequences of linear shape preserving operators, this paper contains a sort of converse result of Voronovskaya-type asymptotic formulae. As a by-product a saturation result is derived. Applications to some very well-known approximation processes are also presented. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2676 / 2683
页数:8
相关论文
共 50 条
  • [1] General Voronovskaya and Asymptotic Theorems in Simultaneous Approximation
    Heiner Gonska
    Radu Păltănea
    Mediterranean Journal of Mathematics, 2010, 7 : 37 - 49
  • [2] General Voronovskaya and Asymptotic Theorems in Simultaneous Approximation
    Gonska, Heiner
    Paltanea, Radu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (01) : 37 - 49
  • [3] On asymptotic formulae via summability
    Garrancho, P.
    Cardenas-Morales, D.
    Aguilera, F.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) : 2174 - 2180
  • [4] Asymptotic formulae and divisor problems
    Calderón, C
    Zárate, MJ
    ACTA MATHEMATICA HUNGARICA, 1999, 85 (04) : 287 - 295
  • [5] Asymptotic Formulae and Divisor Problems
    C. Calderón
    M. J. Zárate
    Acta Mathematica Hungarica, 1999, 85 : 287 - 295
  • [6] Saturation in multivariate simultaneous approximation
    Cardenas-Morales, D.
    Fraguela, A.
    Garrancho, P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (10) : 2098 - 2102
  • [7] Asymptotic Formulae for the n-th Perfect Power
    Jakimczuk, Rafael
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (05)
  • [8] Inequalities and Asymptotic Formulae Related to Generalizations of the Bessel Functions
    Paneva-Konovska, Jordanka
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS, 2010, 1293 : 157 - 164
  • [9] Asymptotic formulae for dynamic equations on time scales with a functional perturbation
    Castillo, S
    Pinto, M
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS: NEW PROGRESS IN DIFFERENCE EQUATIONS, 2004, : 253 - 266
  • [10] Prabhakar Functions of Le Roy Type: Inequalities and Asymptotic Formulae
    Paneva-Konovska, Jordanka
    MATHEMATICS, 2023, 11 (17)