W*-superrigidity for wreath products with groups having positive first l2-Betti number

被引:11
作者
Berbec, Mihaita [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
Deformation/rigidity; II1; factors; W*-superrigidity; wreath products; MEASURE SPACE DECOMPOSITION; VON-NEUMANN-ALGEBRAS; II1; FACTORS; MALLEABLE ACTIONS; STRONG RIGIDITY; HNN EXTENSIONS; CLASSIFICATION;
D O I
10.1142/S0129167X15500032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [M. Berbec and S. Vaes, W*-superrigidity for group von Neumann algebras of leftright wreath products, Proc. London Math. Soc. 108 (2014) 1116 1152] we have proven that, for all hyperbolic groups and for all nontrivial free products Gamma, the left-right wreath product group G := (Z/2Z)((Gamma)) x (Gamma x Gamma) is W*-superrigid, in the sense that its group von Neumann algebra LG completely remembers the group G. In this paper, we extend this result to other classes of countable groups. More precisely, we prove that for weakly amenable groups G having positive first l(2)-Betti number, the same wreath product group G is W*-superrigid.
引用
收藏
页数:27
相关论文
共 38 条
[1]  
[Anonymous], 2007, INT C MATHEMATICIANS
[2]   Group cohomology, harmonic functions and the first L-2-Betti number [J].
Bekka, MEB ;
Valette, A .
POTENTIAL ANALYSIS, 1997, 6 (04) :313-326
[3]   W*-superrigidity for group von Neumann algebras of left-right wreath products [J].
Berbec, Mihaita ;
Vaes, Stefaan .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 :1116-1152
[4]   Orbit equivalence, coinduced actions and free products [J].
Bowen, Lewis .
GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (01) :1-15
[5]   Stable orbit equivalence of Bernoulli shifts over free groups [J].
Bowen, Lewis .
GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (01) :17-38
[6]   SOME UNIQUE GROUP-MEASURE SPACE DECOMPOSITION RESULTS [J].
Chifan, Ionut ;
Peterson, Jesse .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (11) :1923-1966
[7]  
CONNES A, 1982, P SYMP PURE MATH, V38, P43
[8]   CLASSIFICATION OF INJECTIVE FACTORS - CASES II1, II INFINITY, III LAMBDA, LAMBDA NOT-EQUAL-TO 1 [J].
CONNES, A .
ANNALS OF MATHEMATICS, 1976, 104 (01) :73-115
[9]  
Connes A., 1980, J OPER THEORY, V4, P151
[10]   COMPLETELY BOUNDED MULTIPLIERS OF THE FOURIER ALGEBRA OF A SIMPLE LIE GROUP OF REAL RANK ONE [J].
COWLING, M ;
HAAGERUP, U .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :507-549