Congruences for the number of partitions and bipartitions with distinct even parts

被引:11
|
作者
Dai, Haobo [1 ]
机构
[1] Univ Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Partitions and bipartitions with even parts distinct; Congruences; Binary quadratic forms;
D O I
10.1016/j.disc.2014.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ped(n) denote the number of partitions of n wherein even parts are distinct (and odd parts are unrestricted). We show infinite families of congruences for ped(n) modulo 8. We also examine the behavior of ped(-2)(n) modulo 8 in detail where ped(-2)(n) denotes the number of bipartitions of n with even parts distinct. As a result, we find infinite families of congruences for ped(-2)(n) modulo 8. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 50 条
  • [31] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    B. Hemanthkumar
    H. S. Sumanth Bharadwaj
    M. S. Mahadeva Naika
    Acta Mathematica Vietnamica, 2019, 44 : 797 - 811
  • [32] Unique Path Partitions: Characterization and Congruences
    Bessenrodt, Christine
    Olsson, Jorn B.
    Sellers, James A.
    ANNALS OF COMBINATORICS, 2013, 17 (04) : 591 - 602
  • [33] Unique Path Partitions: Characterization and Congruences
    Christine Bessenrodt
    Jørn B. Olsson
    James A. Sellers
    Annals of Combinatorics, 2013, 17 : 591 - 602
  • [34] Congruences for 13-regular partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    UTILITAS MATHEMATICA, 2018, 107 : 103 - 114
  • [35] Cubic partitions in terms of distinct partitions
    Merca, Mircea
    RAMANUJAN JOURNAL, 2025, 67 (02)
  • [36] INFINITE FAMILIES OF CONGRUENCES MODULO 3 AND 9 FOR BIPARTITIONS WITH 3-CORES
    Yao, Olivia X. M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (01) : 47 - 52
  • [37] Congruences for modular forms and generalized Frobenius partitions
    Marie Jameson
    Maggie Wieczorek
    The Ramanujan Journal, 2020, 52 : 541 - 553
  • [38] Theta-type congruences for colored partitions
    Beckwith, O.
    Caione, A.
    Chen, Z.
    Diluia, M.
    Gonzalez, O.
    Su, J.
    JOURNAL OF NUMBER THEORY, 2023, 253 : 317 - 336
  • [39] Congruences for modular forms and generalized Frobenius partitions
    Jameson, Marie
    Wieczorek, Maggie
    RAMANUJAN JOURNAL, 2020, 52 (03) : 541 - 553
  • [40] New Congruences for 2-Color Partitions and t-Core Partitions
    Fathima, S. N.
    Pore, Utpal
    Sriraj, M. A.
    Reddy, P. Siva Kota
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43