Congruences for the number of partitions and bipartitions with distinct even parts

被引:11
|
作者
Dai, Haobo [1 ]
机构
[1] Univ Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Partitions and bipartitions with even parts distinct; Congruences; Binary quadratic forms;
D O I
10.1016/j.disc.2014.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ped(n) denote the number of partitions of n wherein even parts are distinct (and odd parts are unrestricted). We show infinite families of congruences for ped(n) modulo 8. We also examine the behavior of ped(-2)(n) modulo 8 in detail where ped(-2)(n) denotes the number of bipartitions of n with even parts distinct. As a result, we find infinite families of congruences for ped(-2)(n) modulo 8. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 50 条
  • [1] Congruences for the number of 4-tuple partitions with distinct even parts
    Dai, Haobo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (08) : 2037 - 2043
  • [2] Congruences modulo 16, 32 and 64 for bipartitions with distinct even parts
    Liu, Eric H.
    Yao, Olivia X. M.
    Zhao, Tao Yan
    ARS COMBINATORIA, 2018, 140 : 301 - 310
  • [3] The number of partitions with distinct even parts revisited
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [4] Arithmetic properties of bipartitions with even parts distinct
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2014, 33 (02) : 269 - 279
  • [5] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (04) : 1038 - 1054
  • [6] On some infinite families of congruences for [j, k]-partitions into even parts distinct
    M. S. Mahadeva Naika
    T. Harishkumar
    T. N. Veeranayaka
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 1038 - 1054
  • [7] On 9-regular bipartitions with distinct even parts
    Veena, V. S.
    Fathima, S. N.
    JOURNAL OF ANALYSIS, 2023, 31 (02) : 951 - 962
  • [8] NEW CONGRUENCES AND DENSITY RESULTS FOR t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS
    Singh, Ajit
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (06) : 1731 - 1731
  • [9] A partition statistic for partitions with even parts distinct
    Hao, Robert X. J.
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1105 - 1123
  • [10] Congruences for [j,k] - overpartitions with even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    Veeranayaka, T. N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):