Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires

被引:44
作者
Hsiao, Tzu-Kan [1 ,2 ]
Huang, Bor-Woei [1 ]
Chang, Hsu-Kai [3 ]
Liou, Sz-Chian [1 ]
Chu, Ming-Wen [1 ]
Lee, Si-Chen [3 ]
Chang, Chih-Wei [1 ]
机构
[1] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Inst Appl Phys, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 03期
关键词
GERMANIUM-SILICON ALLOYS; THERMOELECTRIC PROPERTIES; SIGE NANOWIRES; CORE-SHELL; TRANSPORT;
D O I
10.1103/PhysRevB.91.035406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By employing three different measurement methods, we rigorously show that micron-scale ballistic thermal conduction can be found in Si-Ge heterogeneously interfaced nanowires exhibiting low thermal conductivities. The heterogeneous interfaces localize most high-frequency phonons and suppress the total thermal conductivity below that of Si or Ge. Remarkably, the suppressed thermal conductivity is accompanied with an elongation of phonon mean free paths over 5 mu m at room temperature, which is not only more than 25 times longer than that of Si or Ge but also longer than those of the best thermal conductors like diamond or graphene. We estimate that only 0.1% of the excited phonons carry out the heat transfer process, and, unlike phonon transport in Si or Ge, the low-frequency phonons in Si-Ge core-shell nanowires are found to be insensitive to twin boundaries, defects, and local strain. The ballistic thermal conduction persisting over 5 mu m, along with the suppressed thermal conductivity, will enable wave engineering of phonons at room temperature and inspire new improvements of thermoelectric devices.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Thermal conductivity of thin single-crystalline germanium-on-insulator structures [J].
Alvarez-Quintana, J. ;
Rodriguez-Viejo, J. ;
Alvarez, F. X. ;
Jou, D. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (9-10) :1959-1962
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials [J].
Bera, Chandan ;
Mingo, Natalio ;
Volz, Sebastian .
PHYSICAL REVIEW LETTERS, 2010, 104 (11)
[4]   Morphology control and optical properties of SiGe nanostructures grown on glass substrate [J].
Chang, Hsu-Kai ;
Lee, Si-Chen .
NANOSCALE RESEARCH LETTERS, 2012, 7
[5]   The growth and radial analysis of Si/Ge core-shell nanowires [J].
Chang, Hsu-Kai ;
Lee, Si-Chen .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[6]   Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2012, 12 (06) :2826-2832
[7]   Thermal conductance of thin silicon nanowires [J].
Chen, Renkun ;
Hochbaum, Allon I. ;
Murphy, Padraig ;
Moore, Joel ;
Yang, Peidong ;
Majumdar, Arun .
PHYSICAL REVIEW LETTERS, 2008, 101 (10)
[8]   Ballistic phonon thermal transport in multiwalled carbon nanotubes -: art. no. 226101 [J].
Chiu, HY ;
Deshpande, VV ;
Postma, HWC ;
Lau, CN ;
Mikó, C ;
Forró, L ;
Bockrath, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (22)
[9]   Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study [J].
Garg, Jivtesh ;
Bonini, Nicola ;
Kozinsky, Boris ;
Marzari, Nicola .
PHYSICAL REVIEW LETTERS, 2011, 106 (04)
[10]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5