Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials

被引:222
作者
Wang, Richard Y. [1 ]
Shyam, Badri [2 ]
Stone, Kevin H. [2 ]
Weker, Johanna Nelson [2 ]
Pasta, Mauro [1 ]
Lee, Hyun-Wook [1 ]
Toney, Michael F. [2 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
PRUSSIAN BLUE ANALOG; LONG CYCLE LIFE; COPPER HEXACYANOFERRATE; STRUCTURAL-CHARACTERIZATION; BATTERY ELECTRODES; POSITIVE ELECTRODE; CRYSTAL-STRUCTURE; CATHODE MATERIAL; ENERGY; INTERCALATION;
D O I
10.1002/aenm.201401869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reversible electrochemical insertion of multivalent ions into materials has promising applications in many fields, including batteries, seawater desalination, element purification, and wastewater treatment. However, finding materials that allow for the insertion of multivalent ions with fast kinetics and stable cycling has proven difficult because of strong electrostatic interactions between the highly charged insertion ions and atoms in the host framework. Here, an open framework nanomaterial, copper hexacyanoferrate, in the Prussian Blue family is presented that allows for the reversible insertion of a wide variety of monovalent, divalent, and trivalent ions (such as Rb+, Pb2+, Al3+, and Y3+) in aqueous solution beyond that achieved in previous studies. Electrochemical measurements demonstrate the unprecedented kinetics of multivalent ion insertion associated with this material. Synchrotron X-ray diffraction experiments point toward a novel vacancy-mediated ion insertion mechanism that reduces electrostatic repulsion and helps to facilitate the observed rapid ion insertion. The results suggest a new approach to multi valent ion insertion that may help to advance the understanding of this complex phenomenon.
引用
收藏
页数:10
相关论文
共 69 条
[1]  
[Anonymous], WATER RES
[2]  
[Anonymous], CHEM COMMUN
[3]  
[Anonymous], 1964, ANGEW CHEM INT
[4]  
[Anonymous], 2000, General Structure Analysis System-GSAS/EXPGUI
[5]  
[Anonymous], CHEM MAT
[6]  
[Anonymous], J PHILIPS J RES
[7]   Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability [J].
Asakura, Daisuke ;
Okubo, Masashi ;
Mizuno, Yoshifumi ;
Kudo, Tetsuichi ;
Zhou, Haoshen ;
Ikedo, Kazumichi ;
Mizokawa, Takashi ;
Okazawa, Atsushi ;
Kojima, Norimichi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (15) :8364-8369
[8]   Progress in rechargeable magnesium battery technology [J].
Aurbach, Doron ;
Suresh, Gurukar Shivappa ;
Levi, Elena ;
Mitelman, Ariel ;
Mizrahi, Oren ;
Chusid, Orit ;
Brunelli, Michela .
ADVANCED MATERIALS, 2007, 19 (23) :4260-+
[9]   Sorption mechanisms of cesium on Cu2IIFeII(CN)6 and Cu3II[FeIII(CN)6]2:: Hexacyanoferrates and their relation to the crystalline structure [J].
Ayrault, S ;
Jimenez, B ;
Garnier, E ;
Fedoroff, M ;
Jones, DJ ;
Loos-Neskovic, C .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 141 (02) :475-485
[10]   Low-cost adsorbents for heavy metals uptake from contaminated water: a review [J].
Babel, S ;
Kurniawan, TA .
JOURNAL OF HAZARDOUS MATERIALS, 2003, 97 (1-3) :219-243