Kink compactons in models with parametrized periodic double-well and asymmetric substrate potentials

被引:12
作者
Nguetcho, AST
Bogning, JR
Yemele, D
Kofane, TC
机构
[1] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
[2] Univ Dschang, Fac Sci, Dept Phys, Dschang, Cameroon
关键词
D O I
10.1016/j.chaos.2003.10.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive kink solutions with compact support (kink compactons) in a nonlinear Klein-Gordon system with an-harmonic coupling. The model is characterized by the double-well Remoissenet-Peyrard (RP) substrate potential V-RP (theta, r) whose shape can be moved as a function of the parameter r in the range 0 less than or equal to r < 1. The phase trajectories, as well as an analytical analysis, provide information on a disintegration of kink compactons upon reaching some critical values of the lattice parameters. Exact analytic expressions for the dependence of this threshold value on the nonlinear parameter, on the velocity of the kink compactons and on the shape parameter are derived. The dependence of the four classes of kink compacton solutions, on the shape parameter r is obtained, and the total energies of each class of kink compactons are exactly calculated. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 32 条
[1]  
Agrawal G., 2006, NONLINEAR FIBER OPTI
[2]  
AGUERO MA, 2001, PHYS REV E, V63, DOI UNSP 0466066
[3]   KINKS IN THE FRENKEL-KONTOROVA MODEL WITH LONG-RANGE INTERPARTICLE INTERACTIONS [J].
BRAUN, OM ;
KIVSHAR, YS ;
ZELENSKAYA, II .
PHYSICAL REVIEW B, 1990, 41 (10) :7118-7138
[4]   GROUND-STATE OF THE FRENKEL-KONTOROVA MODEL WITH A TRANSVERSE DEGREE-OF-FREEDOM [J].
BRAUN, OM ;
PEYRARD, M .
PHYSICAL REVIEW E, 1995, 51 (05) :4999-5015
[5]   ZIGZAG KINKS IN THE FRENKEL-KONTOROVA MODEL WITH A TRANSVERSAL DEGREE OF FREEDOM [J].
BRAUN, OM ;
KIVSHAR, YS .
PHYSICAL REVIEW B, 1991, 44 (14) :7694-7697
[6]   KINKS IN A SYSTEM OF ADATOMIC CHAINS [J].
BRAUN, OM ;
KIVSHAR, YS .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (27) :5961-5970
[7]   Morse-type Frenkel-Kontorova model [J].
Chou, CI ;
Ho, CL ;
Hu, BB ;
Lee, H .
PHYSICAL REVIEW E, 1998, 57 (03) :2747-2756
[8]   DOUBLE-SINE-GORDON SOLITONS IN 2-DIMENSIONAL CRYSTALS [J].
DIKANDE, AM ;
KOFANE, TC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (10) :L141-L146
[9]   EXACT KINK SOLUTIONS IN A NEW NONLINEAR HYPERBOLIC DOUBLE-WELL POTENTIAL [J].
DIKANDE, AM ;
KOFANE, TC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (27) :5203-5206
[10]   Motion of compactonlike kinks [J].
Dinda, PT ;
Kofane, TC ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (06) :7525-7532