Bayesian Detection of Expression Quantitative Trait Loci Hot Spots

被引:34
作者
Bottolo, Leonardo [1 ,2 ]
Petretto, Enrico [1 ,2 ]
Blankenberg, Stefan [3 ]
Cambien, Francois [4 ]
Cook, Stuart A. [2 ,5 ]
Tiret, Laurence
Richardson, Sylvia [1 ,6 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London W2 1PG, England
[2] Univ London Imperial Coll Sci Technol & Med, MRC Clin Sci Ctr, London W12 0NN, England
[3] Univ Heart Ctr, D-20246 Hamburg, Germany
[4] Univ Paris 06, INSERM UMRS 937, F-75013 Paris, France
[5] Univ London Imperial Coll Sci Technol & Med, Natl Heart & Lung Inst, London W2 1PG, England
[6] London Harefield Hosp, Imperial Coll, MRC HPA Ctr Environm & Hlth, Harefield UB9 6JH, Middx, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
MOLECULAR NETWORKS; STOCHASTIC SEARCH; MODEL;
D O I
10.1534/genetics.111.131425
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
High-throughput genomics allows genome-wide quantification of gene expression levels in tissues and cell types and, when combined with sequence variation data, permits the identification of genetic control points of expression (expression QTL or eQTL). Clusters of eQTL influenced by single genetic polymorphisms can inform on hotspots of regulation of pathways and networks, although very few hotspots have been robustly detected, replicated, or experimentally verified. Here we present a novel modeling strategy to estimate the propensity of a genetic marker to influence several expression traits at the same time, based on a hierarchical formulation of related regressions. We implement this hierarchical regression model in a Bayesian framework using a stochastic search algorithm, HESS, that efficiently probes sparse subsets of genetic markers in a high-dimensional data matrix to identify hotspots and to pinpoint the individual genetic effects (eQTL). Simulating complex regulatory scenarios, we demonstrate that our method outperforms current state-of-the-art approaches, in particular when the number of transcripts is large. We also illustrate the applicability of HESS to diverse real-case data sets, in mouse and human genetic settings, and show that it provides new insights into regulatory hotspots that were not detected by conventional methods. The results suggest that the combination of our modeling strategy and algorithmic implementation provides significant advantages for the identification of functional eQTL hotspots, revealing key regulators underlying pathways.
引用
收藏
页码:1449 / +
页数:29
相关论文
共 50 条
[31]   np2QTL: networking phenotypic plasticity quantitative trait loci across heterogeneous environments [J].
Ye, Meixia ;
Jiang, Libo ;
Chen, Chixiang ;
Zhu, Xuli ;
Wang, Ming ;
Wu, Rongling .
PLANT JOURNAL, 2019, 99 (04) :796-806
[32]   HTreeQA: Using Semi-Perfect Phylogeny Trees in Quantitative Trait Loci Study on Genotype Data [J].
Zhang, Zhaojun ;
Zhang, Xiang ;
Wang, Wei .
G3-GENES GENOMES GENETICS, 2012, 2 (02) :175-189
[33]   ADDO: a comprehensive toolkit to detect, classify and visualize additive and non-additive quantitative trait loci [J].
Cui, Leilei ;
Yang, Bin ;
Pontikos, Nikolas ;
Mott, Richard ;
Huang, Lusheng .
BIOINFORMATICS, 2020, 36 (05) :1517-1521
[34]   Quantitative Trait Loci Mapping of First Pod Height in Faba Bean Based on Genotyping-by-Sequencing (GBS) [J].
Lou, Shubao ;
Teng, Changcai ;
Hou, Wanwei ;
Zhou, Xianli ;
Zhang, Hongyan ;
Liu, Yujiao .
AGRONOMY-BASEL, 2024, 14 (09)
[35]   Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica) [J].
Fan, Shenghua ;
Bielenberg, Douglas G. ;
Zhebentyayeva, Tetyana N. ;
Reighard, Gregory L. ;
Okie, William R. ;
Holland, Doron ;
Abbott, Albert G. .
NEW PHYTOLOGIST, 2010, 185 (04) :917-930
[36]   A Note on the Efficiencies of Sampling Strategies in Two-Stage Bayesian Regional Fine Mapping of a Quantitative Trait [J].
Chen, Zhijian ;
Craiu, Radu V. ;
Bull, Shelley B. .
GENETIC EPIDEMIOLOGY, 2014, 38 (07) :599-609
[37]   Evaluation of quantitative trait loci affecting intramuscular fat and reproductive traits in pigs using marker-assisted introgression [J].
Sato, S. ;
Ohnishi, C. ;
Kikuchi, T. ;
Kohira, K. ;
Egawa, S. ;
Terai, S. ;
Nakamura, T. ;
Arata, S. ;
Komatsuda, A. ;
Uemoto, Y. .
ANIMAL GENETICS, 2014, 45 (06) :799-807
[38]   Identification of Quantitative Trait Loci for Altitude Adaptation of Tree Leaf Shape With Populus szechuanica in the Qinghai-Tibetan Plateau [J].
Ye, Meixia ;
Zhu, Xuli ;
Gao, Pan ;
Jiang, Libo ;
Wu, Rongling .
FRONTIERS IN PLANT SCIENCE, 2020, 11
[39]   Bayesian space-time gap filling for inference on extreme hot-spots: an application to Red Sea surface temperatures [J].
Castro-Camilo, Daniela ;
Mhalla, Linda ;
Opitz, Thomas .
EXTREMES, 2021, 24 (01) :105-128
[40]   Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats [J].
Korbolina, Elena E. ;
Kozhevnikova, Ouyna S. ;
Stefanova, Nataliya A. ;
Kolosova, Natalia G. .
AGING-US, 2012, 4 (01) :49-59