Existence for translating solutions of Gauss curvature flow on exterior domains

被引:3
作者
Ju, Hongjie [1 ]
Bao, Jiguang [1 ]
Jian, Huaiyu [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
Dirichlet problem; Gauss curvature; Monge-Ampere; Exterior domain; Asymptotic behavior;
D O I
10.1016/j.na.2012.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the Perron method to prove the existence of viscosity solutions to a class of Monge-Ampere equations on exterior domains in R-n(n >= 2) with prescribed asymptotic behavior at infinity. This problem comes from the study of Gauss curvature flow and its generalization, the flow by powers of Gauss curvature. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3629 / 3640
页数:12
相关论文
共 23 条
[1]   Gauss curvature flow: the fate of the rolling stones [J].
Andrews, B .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :151-161
[2]  
[Anonymous], 2 ORDER ELLIPTIC PAR
[3]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[4]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[5]  
Caffarelli L., 2003, COMMUN PUR APPL MATH, V56, P0549
[6]   INTERIOR W2,P ESTIMATES FOR SOLUTIONS OF THE MONGE-AMPERE EQUATION [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1990, 131 (01) :135-150
[7]  
Calabi E., 1958, MICH MATH J, V5, P105, DOI 10.1307/mmj/1028998055
[8]   COMPLETE AFFINE HYPERSURFACES .1. THE COMPLETENESS OF AFFINE METRICS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (06) :839-866
[9]  
Chou KS, 1996, COMMUN PUR APPL MATH, V49, P529, DOI 10.1002/(SICI)1097-0312(199605)49:5<529::AID-CPA2>3.3.CO
[10]  
2-G