Quasi-Monte Carlo simulation of coagulation-fragmentation

被引:3
|
作者
Lecot, Christian [1 ]
L'Ecuyer, Pierre [2 ]
El Haddad, Rami [3 ]
Tarhini, Ali [4 ]
机构
[1] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, LAMA, F-73000 Chambery, France
[2] Univ Montreal, DIRO, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[3] Univ St Joseph, Fac Sci, UR Math & Modelisat, Lab Math & Applicat, BP 7-5208, Mar Mikhael Beyrouth 11042020, Lebanon
[4] Univ Libanaise, Fac Sci, Sect 5, Nabatieh, Lebanon
基金
加拿大自然科学与工程研究理事会;
关键词
Quasi-Monte Carlo method; Coagulation equation; Fragmentation equation; Stochastic particle method; Low-discrepancy sequence; COALESCENCE; BREAKAGE;
D O I
10.1016/j.matcom.2019.02.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend a quasi-Monte Carlo scheme designed for coagulation to the simulation of the coagulation-fragmentation equation. A number N of particles is used to approximate the mass distribution. After time discretization, three-dimensional quasi-random points decide at every time step whether the particles are undergoing coagulation or fragmentation. We prove that the scheme converges as the time step is small and N is large. In a numerical test, we show that the computed solutions are in good agreement with the exact ones, and that the error of the algorithm is smaller than the error of a corresponding Monte Carlo scheme using the same discretization parameters. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 50 条
  • [1] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [2] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [3] Quasi-Monte Carlo simulation of diffusion
    Lécot, C
    El Khettabi, F
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 342 - 359
  • [4] A quasi-Monte Carlo scheme for Smoluchowski's coagulation equation
    Lécot, C
    Wagner, W
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 1953 - 1966
  • [5] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [6] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [7] Quasi-Monte Carlo simulation for American option sensitivities
    Xiang, Jiangming
    Wang, Xiaoqun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 413
  • [8] Quasi-Monte Carlo simulation methods for measurement uncertainty
    Li, LM
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 356 - 367
  • [9] On quasi-Monte Carlo simulation of stochastic differential equations
    Hofmann, N
    Mathe, P
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 573 - 589
  • [10] Quasi-Monte Carlo simulation of the light environment of plants
    Cieslak, Mikolaj
    Lemieux, Christiane
    Hanan, Jim
    Prusinkiewicz, Przemyslaw
    FUNCTIONAL PLANT BIOLOGY, 2008, 35 (9-10) : 837 - 849