QUANTUM ALGORITHM FOR SYSTEMS OF LINEAR EQUATIONS WITH EXPONENTIALLY IMPROVED DEPENDENCE ON PRECISION

被引:396
作者
Childs, Andrew M. [1 ,2 ]
Kothari, Robin [3 ]
Somma, Rolando D. [4 ]
机构
[1] Univ Maryland, Inst Adv Comp Studies, Dept Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
quantum algorithms; quantum complexity; linear systems; HAMILTONIAN SIMULATION;
D O I
10.1137/16M1087072
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Harrow, Hassidim, and Lloyd showed that for a suitably specified N N matri A and N-dimensional vector (b) over right arrow , there is a quantum algorithm that outputs a quantum state proportional to the solution of the linear system of equations A<()over right arrow> = (b) over right arrow . If A is sparse and well-conditioned, their algorithm runs in time poly(logN,1/epsilon), where ? is the desired precision in the output state. We improve this to an algorithm whose running time is polynomial in log(1/epsilon), eponentially improving the dependence on precision while keeping essentially the same dependence on other parameters. Our algorithm is based on a general technique for implementing any operator with a suitable Fourier or Chebyshev series representation. This allows us to bypass the quantum phase estimation algorithm, whose dependence on epsilon is prohibitive.
引用
收藏
页码:1920 / 1950
页数:31
相关论文
共 25 条
[1]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[2]  
Abramowitz M., 1964, Handbook of Mathematical Functions
[3]   Variable time amplitude amplification and quantum algorithms for linear algebra problems [J].
Ambainis, Andris .
29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 :636-647
[4]  
[Anonymous], 2001, Applied Analysis
[5]  
Berry D. W., 2015, P 56 S FDN COMP SCI
[6]   Exponential improvement in precision for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, :283-292
[7]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[8]  
Berry DW, 2012, QUANTUM INF COMPUT, V12, P29
[9]  
Brassard G., 2002, CONT MATH QUANTUM CO, V305, P53, DOI DOI 10.1090/CONM/305/05215
[10]  
Cheney E., 1982, INTRO APPROXIMATION